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1. Introduction

Linear discriminant analysis (LDA) has been success-
fully used as a dimensionality reduction technique to
many classi"cation problems, such as speech recognition,
face recognition, and multimedia information retrieval.
The objective is to "nd a projection A that maximizes the
ratio of between-class scatter S

�
against within-class scat-

ter S
�

(Fisher's criterion):

arg max
�

�AS
�
A��

�AS
�
A��

.

However, for a task with very high-dimensional data
such as images, the traditional LDA algorithm encoun-
ters several di$culties. Consider face recognition for
example. A low-de"nition face image of size 64�64
implies a feature space of 64�64"4096 dimensions,
and therefore scatter matrices of size 4096�4096"16M.
First, it is computationally challenging to handle big
matrices (such as computing eigenvalues). Second, those
matrices are almost always singular, as the number of
training images needs to be at least 16M for them to be
non-degenerate.

Due to these di$culties, it is commonly believed that
a direct LDA solution for such high-dimensional data
is infeasible. Thus, ironically, before LDA can be used to
reduce dimensionality, another procedure has to be "rst
applied for dimensionality reduction.

In face recognition, many techniques have been
proposed (for a good review, see Ref. [1]). Among them,
the most notable is a two-stage PCA#LDA approach
[2,3]:

A"A
���

A
���

.

Principal component analysis (PCA) is used to project
images from the original image space into a face-sub-
space, where dimensionality is reduced and S

�
is no

longer degenerate, so that LDA can proceed without
trouble. A potential problem is that the PCA criterion
may not be compatible with the LDA criterion, thus the
PCA step may discard dimensions that contain impor-
tant discriminative information.

Chen et al. have recently proved that the null space
of S

�
contains the most discriminative information [1].

But, their approach fell short of making use of any
information outside of that null space. In addition, heu-
ristics are needed to extract a small number of features
for image representation, so as to avoid computational
problems associated with large scatter matrices.

In this paper, we present a direct, exact LDA algorithm
for high-dimensional data set. It accepts high-dimen-
sional data (such as raw images) an input, and optimizes
Fisher's criterion directly, without any feature extraction
or dimensionality reduction steps.

2. Direct LDA solution

At the core of the direct LDA algorithm lies the idea
of simultaneous diagonalization, the same as in the tradi-
tional LDA algorithm. As the name suggests, it tries
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Fig. 1. Thumbnail of the direct LDA algorithm.

to "nd a matrix that simultaneously diagonalizes both
S
�

and S
�
:

AS
�
A�"I, AS

�
A�"�,

where � is a diagonal matrix with diagonal elements
sorted in decreasing order. To reduce dimensionality to
m, we simply pick the top m rows of A, which corresponds
to the largest m diagonal elements in �. Details of the
algorithm can be found in Ref. [4].

The key idea of our new algorithm is to discard the null
space of S

�
* which contains no useful information

* rather than discarding the null space of S
�
, which

contains the most discriminative information. This can
be achieved by diagonalizing S

�
"rst and then diagonaliz-

ing S
�
. The traditional procedure takes the reverse order.

While both approaches produce the same result when
S
�

is not singular, the reversal in order makes a drastic
di!erence for high-dimensional data, where S

�
is likely to

be singular.
The new algorithm is outlined below. Fig. 1 provides

a conceptual overview of this algorithm. Computational
issues will be discussed shortly after.

(1) Diagonalize S
�
: "nd matrix V such that

< �S
�
<"�,

where< �<"I. � is a diagonal matrix sorted in decreas-
ing order.

This can be done using the traditional eigenanalysis,
i.e. each column of < is an eigenvector of S

�
, and � con-

tains all the eigenvalues. As S
�
might be singular, some of

the eigenvalues will be 0 (or close to 0). It is necessary to
discard those eigenvalues and eigenvectors, as projection
directions with a total scatter of 0 do not carry any
discriminative power at all.

Let > be the "rst m columns of < (an n�m matrix,
n being the feature space dimensionality), now

>�S
�
>"D

�
'0,

where D
�
is the m�m principal sub-matrix of �.

(2) Let Z">D��	

�

,

(>D��	

�

)� S
�
(>D��	


�
)"I NZ� S

�
Z"I.

Thus, Z unitizes S
�
, and reduces dimensionality from n to

m.
Diagonalize Z�S

�
Z by eigenanalysis:

;�Z�S
�
Z;"D

�
,

where ;�;"I. D
�

may contain zeros in its diagonal.

Since the objective is to maximize the ratio of total-
scatter against within-class scatter, we can sort the diag-
onal elements of D

�
and discard some eigenvalues in the

high end, together with the corresponding eigenvectors.
It is important to keep the dimensions with the smallest
eigenvalues, especially zeros. This is exactly the reason
why we started by diagonalizing S

�
, rather than S

�
. See

Section 2.2 for more discussion.
(3) Let the LDA matrix

A";�Z�.

A diagonalizes both the numerator and the denominator
in Fisher's criterion

AS
�
A�"D

�
, AS

�
A�"I.

(4) For classi"cation purpose, notice that A already
diagonalizes S

�
; therefore the "nal transformation that

spheres the data should be

xHQD��	

�

Ax.

2.1. Computational considerations

Although the scheme above gives an exact solution for
Fisher's criterion, we have not addressed the computa-
tional di$culty that both scatter matrices are too big to
be held in memory, let alone their eigenanalysis.

Fortunately, the method presented by Turk and Pent-
land [5] for the eigenface problem is still applicable. The
key observation is that scatter matrices can be represent-
ed in a way that both saves memory, and facilitates
eigenanalysis. For example,

S
�
"

�
�
���

n
�
(�

�
!�)(�

�
!�)�"�

�
��

�
(n�n),

where

�
�
"[�n

�
(�

�
!�), �n



(�



!�),2] (n�J)

with J being the number of classes and n
�
the number of

training images for class i. Thus, instead of storing an
n�n matrix, we need only to store �

�
which is n�J. The

eigenanalysis is simpli"ed by virtue of the following
lemma:

Lemma 1. For any n�m matrix L, mapping xPLx is
a one-to-one mapping that maps eigenvectors of L�L
(m�m) onto those of LL� (n�n).
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�Null space of S
�

"�x � S
�
x"0, x3R��.

As ��
�
�

�
is a J�J matrix, eigenanalysis is a!ordable.

In Step 2 of our algorithm, to compute eigenvalues for
Z�S

�
Z, simply notice

S
�

"�
�

(x
�
!�

��
)(x

�
!�

��
)�"�

�
��

�
,

where

�
�

"[x
�
!�

��
,x



!�

�

,2] (n�n

�
),

with n
�
being the total number of images in the training

set. Thus

Z�S
�
Z"Z��

�
��

�
Z"(��

�
Z)���

�
Z.

We can again use Lemma 1 to compute eigenvalues.

2.2. Discussions

2.2.1. Null space of Sw
The traditional simultaneous diagonalization begins

by diagonalizing S
�
. If S

�
is not degenerate, it gives the

same result as our approach. If S
�

is singular, however,
the traditional approach runs into a dilemma: to proceed,
it has to discard those eigenvalues equal to 0; but those
discarded eigenvectors are the most important dimen-
sions!

As Chen et al. pointed out [1], the null space of
S
�
� carries most of the discriminative information. More

precisely, for a projection direction a, if S
�
a"0, and

S
�
aO0, aS

�
a�/aS

�
a� is maximized. The intuitive

explanation is that, when projected onto direction a,
within-class scatter is 0 but between-class scatter is not.
Obviously, perfect classi"cation can be achieved in this
direction.

Di!erent from the algorithm proposed in Ref. [1],
which operates solely in the null space, our algorithm can
take advantage of all the information, both within and
outside of S

�
's null space. Our algorithm can still be used

in cases where S
�

is not singular, which is common in
tasks like speech recognition.

2.2.2. Equivalence to PCA#LDA
As Fukunaga pointed out [4], there are other variants

of Fisher's criterion

arg max
�

�A�S
�
A�

�A�S
�
A�

or arg max
�

�A�S
�
A�

�A�S
�
A�

,

where S
�
"S

�
#S

�
is the total scatter matrix.

Interestingly, if we use the "rst variant (with S
�
in the

numerator), Step 1 of our algorithm becomes exactly
PCA. Discarding S

�
's eigenvectors with 0 eigenvalues

reduces dimensionality, just as Belhumeur et al. proposed
in their two-stage PCA#LDA method [3]. If their
LDA step handled S

�
's null space properly, the two

approaches would give the same performance. In a sense
our method can be called `uni"ed PCA#LDAa, since
there is no separate PCA step. It not only leads to a clean
presentation, but also results in an e$cient implementa-
tion.

3. Face recognition experiments

We tested the direct LDA algorithm on face images
from Olivetti-Oracle Research Lab (ORL, http://
www.cam-orl.co.uk). The ORL data set consists of 400
frontal faces: 10 tightly, cropped images of 40 individuals
with variations in pose, illumination, facial expression
(open/closed eyes, smiling /not smiling) and facial details
(glasses/no glasses). The size of each image is 92�112
pixels, with 256 grey levels per pixel.

Three sets of experiments are conducted. In all cases
we randomly choose "ve images per person for training,
the other "ve for testing. To reduce variation, each ex-
periment is repeated at least 10 times.

Without dimensionality reduction in Step 2, average
recognition accuracy is 90.8%. With dimensionality
reduction, where everything outside of S

�
's null

space is discarded, average recognition accuracy becomes
86.6%. This veri"es that while S

�
's null space is

important, discriminative information does exist outside
of it.

4. Conclusions

In this paper, we proposed a direct LDA algorithm for
high-dimensional data classi"cation, with application to
face recognition in particular. Since the number of sam-
ples is typically smaller than the dimensionality of the
samples, both S

�
and S

�
are singular. By modifying the

simultaneous diagonalization procedure, we are able to
discard the null space of S

�
* which carries no dis-

criminative information* and to keep the null space of
S
�
, which is very important for classi"cation. In addition,

computational techniques are introduced to handle large
scatter matrices e$ciently. The result is a uni"ed LDA
algorithm that gives an exact solution to Fisher's cri-
terion whether or not S

�
is singular.
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