12. 01. 2017

Faktoren- und andere Analysen

Übungen 5

		gabe: Worin besteht der Unterschied zwischen einer PCA und einer eorenanalyse (FA)?
	(a)	Die PCA bestimmt nur die Hauptachsen von Ellipsoiden, während die FA auf psychologisch sinnvolle Faktoren (= latente Dimensionen) zielt. $\hfill\Box$
	(b)	Die PCA ist nur eine Anwendung von Theoremen der Linearen Algebra, während die FA ein psychologisches Modell ist. $\hfill\Box$
	(c)	Bei der FA werden gemeinsame latente Variablen (Faktoren) einerseits und spezifische Faktoren bzw. Fehler separat geschätzt, bei der PCA wird eine solche Trennung zunächst nicht vorgenommen $\hfill\Box$
	(d)	Bei der FA wird die multivariate Normalverteilung der Daten angenommen, bei der PCA nicht. $\hfill\Box$
2.	Dim	gabe: Ein gängiges Argument gegen die PCA ist, dass die latenten ensionen (Hauptachsen) nicht rotiert werden können, ohne die Unabgigkeit der latenten Variablen zu zerstören.
	(a)	Macht nichts, unrotiert sind Hauptachsen am schönsten. $\hfill\Box$
	(b)	Da Rotationen beliebig sind, gewinnt man auch nichts, wenn man ro-
		tiert.
	(c)	
	()	Man kann $entweder$ die Faktorwerte $oder$ die Ladungen rotieren und dabei die Orthogonalität erhalten (vergl. Satz 3.1 im Skriptum "Ein-
3.	(d) Auf	Man kann $entweder$ die Faktorwerte $oder$ die Ladungen rotieren und dabei die Orthogonalität erhalten (vergl. Satz 3.1 im Skriptum "Einführung in die Hauptkomponenten")
3.	(d) Auf trix zwis	Man kann entweder die Faktorwerte oder die Ladungen rotieren und dabei die Orthogonalität erhalten (vergl. Satz 3.1 im Skriptum "Einführung in die Hauptkomponenten") \square Die Bedeutung von Rotationen wird weithin überschätzt. \square gabe: Gegeben sei eine multiple Regression $\mathbf{y} = X\mathbf{b} + \mathbf{e}, X$ die Mader Prädiktorvariablen (-> Spalten). Welcher Zusammenhang besteht

	(c)	Es gibt keinen Zusammenhang zwischen $\hat{\bf b}$ und den λ_k , da die Schät zungen $\hat{\bf b}$ nur von der Voraussagekraft der Prädiktoren abhängen.
	(d)	Korrelationen zwischen den Prädiktoren implizieren die Existenz kleiner Eigenwerte, die sich wiederum auf die Varianz der Komponenter von $\hat{\mathbf{b}}$ auswirken.
4.		einer PCA-Regression wird die SVD auf die Matrix X der Prädiktoren ewendet, $X=Q\Lambda^{1/2}T'.$
	(a)	Die neuen Prädiktoren sind die Spalten von $A = T\Lambda^{1/2}$.
	(b)	Die neuen Prädiktoren sind die Spalten von $L=Q\Lambda^{1/2}$.
		Die neuen Prädiktoren sind die Spalten von Q , $\mathbf{u}=\Lambda^{1/2}T'\mathbf{b}$ ist de Vektor der neuen Regressionsgewichte.
5.	X =	gabe: Eine Faktorenanalyse soll durch eine SVD approximiert werden $Q\Lambda^{1/2}T'$. Welche Bedeutung hat die Matrix $A = T\Lambda^{1/2}$, in welche ehung steht sie zur Matrix R der Korrelationen zwischen den Items?
	(a)	$R = A'A$, wobei diag $(A'A) = \text{diag}(\lambda_1, \dots, \lambda_n)$.
	(b)	$R = AA', A'A = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$
	(c)	A ist die Matrix der Ladungen der Variablen. Da sie hypothetisch ist steht sie in keiner direkten Beziehung zur empirisch gegeben Matrix R .
	(d)	$X=A^{\prime}A,$ da man die Daten aus den Ladungen vorhersagen kann. \square
6.		'gabe: Es sei $\mathbf{a}_j = (a_{1j}, a_{2j}, \dots, a_{nj})'$ der Vektor der Ladungen der <i>j</i> -terablen auf den latenten Dimensionen.
	(a)	$\mathbf{a}_i'\mathbf{a}_j=1$ für alle j .
		$\mathbf{a}_j \mathbf{a}_j'$ ist als dyadisches Produkt eine orthonormale Matrix, da die \mathbf{a} orthonormal sind.
	(c)	$\mathbf{a}_{j}'\mathbf{a}_{j'}=0$, da die Faktoren orthonormal sind.
	(d)	$\mathbf{a}_j = \vec{0},$ wenn die $j\text{-te}$ Variable linear abhängig von den übrigen Variablen ist.
7.	anal Merl	gabe: Sie sollen einen aus dichotomen Items bestehenden Frageboger ysieren und dazu die latenten Variablen bestimmen, die die befragter kmalen unterliegen. Sie berechnen deshalb alle Paare von Items die espondierenden ϕ -Koeffizienten.
	(a)	ϕ -Koeffizienten sind keine richtigen Korrelationskoeffizienten, da die Antworten nur als entweder falsch (0) oder korrekt (1) kodiert werden die Merkmale also nicht auf einer Intervallskala gemessen werden.

	(b)	$\phi_{ij}=.5$ für alle Variablen $i\neq j$ bedeutet, dass es bei n Items n/s latente Dimensionen gibt.
	(c)	Im Fall von $\phi_{ij} \approx .5$ für alle $i \neq j$ gibt es bei hinreichend großem Wert von n nur einen Eigenwert größer als 1.
	(d)	Die Randverteilungen $p_i \neq p_j$ für Itempaare $(i \neq j)$ sind wesentlich, um irrelevante Schwierigkeitsfaktoren zu vermeiden.
8.	$nich$ $hat :$ $\mathbf{y} =$ $Klas$	'gabe: Verurteilte Straftäter sollen als entweder rückfallgefährdet oder trückfallgefährdet klassifiziert werden. Für eine Gruppe von Straftätern man p Symptome (Prädiktoren) auf Intervallsskalen gemessen, so dass $u_1\mathbf{x}_1+u_2\mathbf{x}_2+\cdots+u_p\mathbf{x}_p$ und der Wert von \mathbf{y} soll eine möglichst fehlerfreie sifikation erlauben. Gesucht sind die "Gewichte" $u_k, k=1,\ldots,p$, um optimale Klassifikation zu gewährleisten.
	(a)	Der Ansatz ist schon deswegen falsch, weil kein Fehlerterm ${\bf e}$ in der Regressionsgleichung für ${\bf y}$ auftritt.
	(b)	Der Ansatz ist schon deswegen falsch, weil sich menschliches Vedhalten nicht berechnen läßt. $\hfill\Box$
	(c)	Der Ansatz ist falsch, weil \mathbf{y} notwendig eine $(0, 1)$ -Skala sein müsste (nicht rückfällig, rückfällig), bei kontinuierlichen Prädiktoren \mathbf{x}_k muß abr \mathbf{y} ebenfalls kontinuierlich sein.
	(d)	Man muß $\mathbf{u} = (u_1, \dots, u_p)'$ so bestimmen, dass die Varianz der \mathbf{y} zwischen den beiden Gruppen (rückfällig versus nicht rückfällig) maximal wird relativ zur Varianz innerhalb der Gruppen.
9.	Auf	gabe: Es werde noch einmal der Ansatz von Aufgabe 8 betrachtet.
	(a)	\mathbf{y} ist eine Linearkombination der \mathbf{x}_k , $1 \leq k \leq p$ und definiert deshalb eine Gerade in einem maximal p -dimensionalen Raum, der linearen Hülle der \mathbf{x}_k . Der Ansatz $\mathbf{y} = \sum_k u_k \mathbf{x}_k$ kann also nur funktionieren, wenn sich das Merkmal Rückfälligkeit auf einer 1-dimensionalen Skala abbilden läßt.
	(b)	Man kann die Varianzen-Kovarianzen zwischen den Gruppen in einer Matrix B zusammenfassen, und die Varianzen-Kovarianzen innerhalb der Gruppen in einer Matrix W . Die Maximierung Der Varianz "zwischen" relativ zur Varianz "innerhalb"
		i. bedeutet die Maximierung von $\mathbf{u}'B\mathbf{u}/\mathbf{u}'W\mathbf{u} = \lambda$ bezüglich \mathbf{u} . \square ii. bedeutet die Bestimmung der \mathbf{u} für $W^{-1}B\mathbf{u} = \lambda\mathbf{u}$. \square iii. \mathbf{u} als Eigenvektor von $W^{-1}B$ kann nur berechnet werden, wenn $W^{-1}B$ eine symmetrische Matrix ist. \square
	(c)	$W=PDP',\ P$ die Eigenvektoren von W und $D=\mathrm{diag}(d_1,\ldots,d_n)$ die Eigenwerte von W . Dann $W^{-1}=PD^{-1}P'$. Welche Implikationen
		haben kleine Eigenwerte von W ? Bedenken Sie: $W^{-1} = \sum_k \frac{\mathbf{p}_k \mathbf{p}'_k}{d_k}$.

	i.	Kleine Eigenwerte deuten auf Kollinearitäten der Prädiktoren
		W^{-1} bedeutet große Varianz der Schätzungen für u .
	ii.	Da $W^{-1}B\mathbf{u}=\lambda\mathbf{u}$ folgt, dass die Komponenten von \mathbf{u} zu klein ausfallen.
	iii.	Da $W^{-1}B\mathbf{u} = \lambda \mathbf{u}$ folgt, dass die Komponenten von \mathbf{u} zu grof ausfallen.
(d)		Anzahl der Lösungen u für $W^{-1}B\mathbf{u}=\lambda\mathbf{u}$ entspricht dem Rang $W^{-1}B$.
	i.	Da $\mathbf{y} = \sum_k u_k \mathbf{x}_k$ eine Gerade im p -dimensionalen Raum der Prädiktoren definiert, muß $eine$ der Lösungen \mathbf{u}_k ausgewählt werden – man wählt die, deren zugehöriger Eigenwert λ maximal ist.
	ii.	Verschiedene Lösungen \mathbf{u}_k können nicht orthogonal sein, da $W^{-1}E$ nicht notwendig symmetrisch ist ¹ .
	iii.	Verschiedene Lösungen \mathbf{u}_k definieren einen orthogonalen Teilraum der linearen Hülle der \mathbf{x}_k mit den Achsen $\mathbf{y}_1,\dots,\mathbf{y}_r,r\leq p$.

 $^{^{1}\}mathrm{Die}$ Eigenvektoren symmetrischer Matrizen sind orthogonal.