Übungen 4 – Formale Grundlagen der PCA

- 1. **Aufgabe:** Gegeben sei eine $(m \times n)$ -Datenmatrix: m = 200 Fälle, n = 50 Variablen. Was bedeutet es, wenn für diese Matrix gesagt werden kann, dass die 200 Zeilenvektoren in einem 5-dimensionalen Teilraum des \mathbb{R}^{200} liegen? Ist es in diesem Fall möglich, dass die 50 200-dimensionalen Spaltenvektoren in einem 5-dimensionalen Teilraum liegen?
- 2. **Aufgabe:** Es sei A eine (10×3) -Matrix. \mathbf{x} und \mathbf{y} seien Vektoren. Betrachten sie das Gleichungssystem $\mathbf{y} = A\mathbf{x}$.
 - (a) Welche notwendige Bedingung muß erfüllt sein, damit dine Lösungsvektor \vec{x} existiert?
 - (b) Wieviele Dimensionen hat der Vektorraum, in dem \mathbf{x} liegt, und wieviele Dimensionen hat der Vektorraum, in dem \mathbf{y} liegt?
 - (b) Die Matrix A und der Vektor \mathbf{y} seien vorgegeben. Läßt sich \mathbf{x} dann berechnen? Wenn ja, Welche Voraussetzung muß erfüllt sein?
 - (c) Existiert eine zu A inverse Matrix A^{-1} ?
- 3. Aufgabe: Es seien A und B zwei nicht quadratische Matrizen.
 - (a) Welche Voraussetzungen müssen erfüllt sein, damit Sie ein Produkt C = AB berechnen können, und gilt dann AB = BA?
 - (b) Angenommen, das Produkt C kann berechnet werden. Sind die Spaltenvektoren von C dann Linearkombinationen der Spalten von A oder der Spalten von B?
 - (c) A habe den Rang $rg(A) = r_A$ und B habe den Rang $rg(B) = r_B < r_A$. Welche allgemeine Aussage läßt sich über den Rang von C machen, falls C berechenbar ist?
 - (d) Welche Bedingung muß notwendig erfüllt sein, damit die Spaltenvektoren von C Linearkombinationen der Zeilenvektoren von B sind? Die Bedingung muß nicht hinreichend sein. (Hinweis: Die Anzahlen der Zeilen und Spalten von C hängen von den Anzahlen der Zeilen und Spalten von A und B ab!)
- 4. **Aufgabe:** Die $(m \times n)$ -Datenmatrix X habe den Rang r. Bekanntlich läßt sich X dann stets als Produkt zweier Matrizen U und V schreiben, d.h. X = UV.
 - (a) Welche Aussage läßt sich dann einerseits über die Anzahl der Zeilen von U und andererseits über die Zeilen und Spalten von V machen?
 - (b) Was läßt sich über die Ränge von U und V sagen?
 - (c) Müssen die Spaltenvektoren von U notwendig orthogonal sein?

- (d) Welche Beziehung besteht zwischen der SVD von X und der Beziehung X = UV?
- 5. Aufgabe: Eine $(m \times n)$ -Datenmatrix X habe den Rang r.
 - (a) Ist die Möglichkeit, die Spalten von X als Linearkommbinationen von Basisvektoren darzustellen, an Annahmen über die Wahrscheinlichkeitsverteilung der Elemente x_{ij} gekoppelt?
 - (b) Welche Dimensionalität haben die Basisvektoren, und welche Dimensionalität hat die lineare Hülle (i) der Spaltenvektoren von X, (ii) der Zeilenvektoren von X?
 - (c) Wieviele Möglichkeiten haben Sie, Basisvektoren für den Teilraum des \mathbb{R}^m zu wählen, in dem die Spaltenvektoren von X liegen?
- 6. **Aufgabe:** Für die Datenmatrix wird der Ansatz X = LT' gemacht, wobei die Transformation von Vektoren \mathbf{x} gemäß $\mathbf{y} = T\mathbf{x}$ eine Rotation der \mathbf{x} bedeuten soll.
 - (a) Welche Beziehung besteht zwischen den Zeilenvektoren $\tilde{\mathbf{x}}_i$ von X und den Zeilenvektoren $\tilde{\mathbf{L}}_i$ $(i=1,\ldots,m)$ von L?
 - (b) Die Punktekonfiguration der Fälle wird durch die Endpunkte der Vektoren $\tilde{\mathbf{x}}_i$ definiert. Warum liegt der Endpunkt jedes Vektors $\tilde{\mathbf{x}}_i$ auf einem Ellipsoid \mathcal{E}_i und warum haben alle diese Ellipsoide dieselbe Orientierung?
 - (c) Impliziert die unter (b) genannte Beziehung zwischen Datenpunkten und Ellipsoiden, dass die Daten multivariat normalverteilt sind?
 - (d) Liegen die Variablen, die durch die Endpunkte der Spaltenvektoren \mathbf{x}_j von X repräsentiert werden, ebenfalls auf Ellipsoiden?
- 7. **Aufgabe:** Es gelte wieder X = LT'. Die Annahmen, dass (i) die Spaltenvektoren von L sind orthognal, und (ii) T repräsentiert eine Rotation implizieren, dass die Hauptachsen der unter (c) der vorangegangenen Aufgabe genannten Ellipsoide als neues Koordinatensystem betrachtet werden, dessen Achsen unkorrelierte latente Variablen repräsentieren.
 - (a) Wie werden die Koordinaten der Datenpunkte auf diesen Achsen berechnet?
 - (b) Durch welche Eigenschaft sind die Eigenvektoren von X'X charakterisiert?
 - (c) in welcher Beziehung stehen die Varianzen der Koordinaten der Datenpunkte (Fälle) auf den Hauptachsen der Ellipsoide zu den Eigenwerten von X'X?
 - (d) Für die zentrierten oder standardisierten Messwerte x_{ij} gilt gemäß dem Ansatz X = LT'

$$x_{ij} = \begin{cases} q_{i1}a_{j1} + q_{i2}a_{j2} + \dots + q_{in}a_{jn}, \text{ oder} \\ L_{i1}t_{j1} + L_{i2}t_{j2} + \dots + L_{in}t_{jn}. \end{cases}$$
(1)

Von welcher Umformulierung von X=LT' wurde hier Gebrauch gemacht und welche Zielsetzungen liegt Ihre Entscheidung für eine der beiden Möglichkeiten zugrunde?

- (e) Ein Sozialpsychologe berichtet, er habe bei der Analyse einer Datenmatrix X gefunden, dass die Ränge von X und L gleich r seien, T aber einen Rang s < r habe. Ein pädagogischer Psychologe stimmt dem Befund zu, weil er bei einer Datenanalyse gefunden habe, X und T hätten denselben Rang r gehabt, L aber habe einen Rang s > r gehabt; die Anzahl der Dimensionen für die Fälle einerseits und die Variablen andererseits könnten also verschieden sein. Können Sie Bedingungen angeben, unter denen die beiden Forscher recht haben?
- 8. **Aufgabe:** Die rechte Seite der Gleichungen (1) enthält lauter unbekannte Grössen.
 - (a) Sie werden mit der Methode der Kleinsten Quadrate geschätzt.
 - (b) Sie lassen sich direkt aus den Daten ausrechnen.
 - (c) Sie lassen sich aus Hypothesen über die Beziehungen zwischen den Variablen herleiten.
- 9. **Aufgabe:** Für eine gegebene Datenmatrix X berechnen Sie die Ladungen der Variablen.
 - (a) In welcher Beziehung stehen die Vektoren \mathbf{a}_j und \mathbf{a}_k der Ladungen für die Variablen j und k zu den Korrelationen r_{jk} ?
 - (b) Welche allgemeine Interpretation für die Ladung a_{jk} (j-te Variable, k-te latente Dimension) kennen Sie?
 - (c) Welche Implikation hat die Tatsache, dass $r_{jj} = 1$ für alle Variablen j = 1, ..., n, für die Position der Endpunkte der Ladungsvektoren \mathbf{a}_j ?
 - (d) Der Rang von X sei r < n; welchem geometrischen Gebilde entsprechen die Endpunkte der \mathbf{a}_i in diesem Fall?
- 10. **Aufgabe:** X sei wieder eine $(m \times n)$ -Datenmatrix. Welche der folgenden Aussagen ist korrekt, und wenn ja, warum?, und wenn nicht, warum nicht?
 - (a) Die SVD $X = Q\Lambda^{1/2}T'$ läßt sich nur berechnen, wenn m > n.
 - (b) Die Matrix A der Ladungen ist stets quadratisch.
 - (c) Welcher Matrix entspricht das Produkt AA', können Sie Ihre Antwort herleiten?
 - (d) Welcher Matrix entspricht das Produkt A'A, können Sie Ihre Antwort herleiten?