Vektoren und Matrizen

Übungen 1

Aufgabe 1: Gegeben seien die Vektoren $\mathbf{x}_1 = (1,2)'$ und $\mathbf{x}_2 = (2,3)'$. Lassen sich Koeffizienten a und b finden derart, dass $a\mathbf{x}_1 + b\mathbf{x}_2 = \vec{0} = (0,0)'$? Welchen Wert hat das Skalarprodukt $\mathbf{x}_1'\mathbf{x}_2$? Sind \mathbf{x}_1 und \mathbf{x}_2 linear abhängig oder linear unabhängig?

Aufgabe 2: Gegeben seien die Vektoren $\mathbf{x}_1 = (1,2)'$, $\mathbf{x}_2 = (2,3)'$ und $\mathbf{x}_3 = (1,1.5)'$. Für welches Paar $(\mathbf{x}_j,\mathbf{x}_k)$ gilt $\cos\theta_{jk} = 1$, θ_{jk} der Winkel zwischen den entsprechenden Vektoren? Sind die Vektoren $\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3$ linear abhängig oder linear unabhängig?

Aufgabe 3: Es seien \mathbf{x} , \mathbf{y} und \mathbf{z} Vektoren und es gelte $\mathbf{x} \not\parallel \mathbf{y}$, d.h. \mathbf{x} und \mathbf{y} seien nicht parallel. Es gelte $a\mathbf{x} + b\mathbf{y} = \mathbf{z}$ für bestimmte Koeffizienten $a, b \in \mathbb{R}$. Weiter seien

$$\tilde{\mathbf{x}} = \frac{\mathbf{x}}{\|\mathbf{x}\|}, \ \tilde{\mathbf{y}} = \frac{\mathbf{y}}{\|\mathbf{y}\|}, \ \tilde{\mathbf{z}} = \frac{\mathbf{z}}{\|\mathbf{z}\|}$$

die korrespondierenden normierten Vektoren. Existieren Koeffizienten α und β mit

$$\alpha \tilde{\mathbf{x}} + \beta \tilde{\mathbf{v}} = \tilde{\mathbf{z}}$$
?

Unter welchen Bedingungen gilt

$$a\tilde{\mathbf{x}} + b\tilde{\mathbf{y}} = \tilde{\mathbf{z}}$$
?

(Anmerkung: die Normierung läßt die Orientierung der Vektoren invariant.)

Aufgabe 4: Es sei

$$R = \begin{pmatrix} 1 & r \\ r & 1 \end{pmatrix}, \quad -1 \le r \le 1$$

Für welche Vektoren **t** gilt

$$R\mathbf{t} = \lambda \mathbf{t}, \quad \lambda \in \mathbb{R}$$
?

Können Sie einen Ausdruck für die zugehörigen λ -Werte angeben? Angenommen, es gäbe zwei Vektoren \mathbf{t}_1 und \mathbf{t}_2 , diese Gleichung erfüllen. Zeigen Sie, dass dann notwendig $\mathbf{t}_1'\mathbf{t}_2 = 0$ gilt.

Hinweis: Es existieren zwei Vektoren \mathbf{t}_1 und \mathbf{t}_2 , die diese Beziehung erfüllen, mit zugehörigen Werten für λ . In einer Matrix $T = [\mathbf{t}_1, \mathbf{t}_2]$ zusammengefasst kann man

$$T = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

betrachten. Zeigen Sie, dass T'T = I; welchen Wert hat der Winkel θ ?

Aufgabe 5: V_1, V_2, V_3 seien physiologische Größen, die psychischen Stress repräsentieren. An hundert Vpn werden Messungen dieser Variablen vorgenommen, die in drei 100-dimensionalen Vektoren $\mathbf{x}_1, \mathbf{x}_2$ und \mathbf{x}_3 zusammengefasst werden; die Komponenten von \mathbf{x}_j enthalten die Messwerte für $V_j, j = 1, 2, 3$. Es zeigt sich, dass $\mathbf{x}_1 \not\parallel \mathbf{x}_2$, aber $\mathbf{x}_2 \parallel \mathbf{x}_3$ (\mathbf{x}_1 ist nicht parallel zu \mathbf{x}_2 , aber \mathbf{x}_2 ist parallel zu \mathbf{x}_3). (Wenn die Messungen unabbhängig voneinander sind, bedeutet $\mathbf{x}_2 \parallel \mathbf{x}_3$, dass die Messungen praktisch messfehlerfrei sind!). Zeigen Sie, dass die $\mathbf{x}_j, j = 1, 2, 3$ eine Ebene im 100-dimensionalen Vektorraum definieren.

Aufgabe 6: Es sei $U = \{ \mathbf{u} = \lambda \mathbf{u}_0, \mathbf{u}_0 = (1, 2, 3)', \lambda \in \mathbb{R} \}.$

- 1. Zeigen Sie, dass U ein Teilraum des \mathbb{R}^3 (d.h. des 3-dimensionalen Vektorraums) ist.
- 2. Zeigen Sie, dass sich die Vektoren $\mathbf{x}_1 = (-2, 1, 0)'$ und $\mathbf{x}_2 = (-3, 0, 1)'$ als Linearkombinationen der Einheitsvektoren $\mathbf{e}_1 = (1, 0, 0)'$, $\mathbf{e}_2 = (0, 1, 0)'$ und $\mathbf{e}_3 = (0, 0, 1)'$ darstellen lassen.
- 3. Zeigen Sie, dass jeder Vektor (d.h. jede Linearkombination von \mathbf{x}_1 und \mathbf{x}_2) $\mathbf{y} = \alpha \mathbf{x}_1 + \beta \mathbf{x}_2, \ \alpha, \beta \in \mathbb{R}$ beliebig wählbar, orthogonal zu jedem Vektor $\mathbf{u} \in U$ ist.

Anmerkung: Die Menge der Vektoren, die orthogonal zu den Vektoren $\mathbf{u} \in U$ sind, heißt der zu U orthogonale Teilraum U^{\perp} des \mathbb{R}^3 . Dieser orthogonale Teilraum ist eine Ebene, – warum?