12. 01. 2017

Übungen 5 Lösungen

1.	. Aufgabe: Worin besteht der Unterschied zwischen einer PCA und Faktorenanalyse (FA)?		
	(a)	Die PCA bestimmt nur die Hauptachsen von Ellipsoiden, während die FA auf psychologisch sinnvolle Faktoren (= latente Dimensionen) zielt. $\hfill\Box$	
	(b)	Die PCA ist nur eine Anwendung von Theoremen der Linearen Algebra, während die FA ein psychologisches Modell ist. $\hfill\Box$	
	(c)	Bei der FA werden gemeinsame latente Variablen (Faktoren) einerseits und spezifische Faktoren bzw. Fehler separat geschätzt, bei der PCA wird eine solche Trennung zunächst nicht vorgenommen $\square \mathbf{X}$	
	(d)	Bei der FA wird die multivariate Normalverteilung der Daten angenommen, bei der PCA nicht. $\hfill\Box$	
2.	2. Aufgabe: Ein gängiges Argument gegen die PCA ist, dass die lat Dimensionen (Hauptachsen) nicht rotiert werden können, ohne die Uhängigkeit der latenten Variablen zu zerstören.		
	(a)	Macht nichts, unrotiert sind Hauptachsen am schönsten. $\hfill\Box$	
	(b)	Da Rotationen beliebig sind, gewinnt man auch nichts, wenn man rotiert. $\hfill\Box$	
	(c)	Man kann $entweder$ die Faktorwerte $oder$ die Ladungen rotieren und dabei die Orthogonalität erhalten (vergl. Satz 3.1 im Skriptum "Einführung in die Hauptkomponenten")	
	(d)	Die Bedeutung von Rotationen wird weithin überschätzt. $\hfill\Box$	
		gabe: Gegeben sei eine multiple Regression $\mathbf{y} = X\mathbf{b} + \mathbf{e}$, X die Mader Prädiktorvariablen (-> Spalten). Welcher Zusammenhang besteht chen der Schätzung $\hat{\mathbf{b}}$ und den Eigenwerten λ_k von X ?	
	(a)	Der Vektor $(\lambda_1,\dots,\lambda_n)$ gibt die Richtung an, in die die besten Schätzungen $\hat{\mathbf{y}}$ zeigen.	
	(b)	Je größer die $\lambda_k,$ desto weniger Komponenten von ${\bf b}$ müssen geschätzt werden. $\hfill \Box$	
	(c)	Es gibt keinen Zusammenhang zwischen $\hat{\bf b}$ und den λ_k , da die Schätzungen $\hat{\bf b}$ nur von der Voraussagekraft der Prädiktoren abhängen. \Box	

(d)	Korrelationen zwischen den Prädiktoren implizieren die Exister ner Eigenwerte, die sich wiederum auf die Varianz der Kompovon $\hat{\mathbf{b}}$ auswirken.	
	einer PCA-Regression wird die SVD auf die Matrix X der Prädiewendet, $X=Q\Lambda^{1/2}T'.$	ktoren
(a)	Die neuen Prädiktoren sind die Spalten von $A=T\Lambda^{1/2}.$	
(b)	Die neuen Prädiktoren sind die Spalten von $L=Q\Lambda^{1/2}.$	
(c)	Die neuen Prädiktoren sind die Spalten von Q , $\mathbf{u}=\Lambda^{1/2}T'\mathbf{b}$ Vektor der neuen Regressionsgewichte.	ist der $\Box \mathbf{X}$
X =	fgabe: Eine Faktorenanalyse soll durch eine SVD approximiert w = $Q\Lambda^{1/2}T'$. Welche Bedeutung hat die Matrix $A = T\Lambda^{1/2}$, in v iehung steht sie zur Matrix R der Korrelationen zwischen den It	velcher
(a)	$R = A'A$, wobei diag $(A'A) = diag(\lambda_1, \dots, \lambda_n)$.	
(b)	$R = AA', A'A = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$	$\Box \mathbf{X}$
(c)	A ist die Matrix der Ladungen der Variablen. Da sie hypothetissteht sie in keiner direkten Beziehung zur empirisch gegeben R .	
(d)	$X=A^{\prime}A,$ da man die Daten aus den Ladungen vorhersagen ka	nn. 🗆
	fgabe: Es sei $\mathbf{a}_j = (a_{1j}, a_{2j}, \dots, a_{nj})'$ der Vektor der Ladungen de iablen auf den latenten Dimensionen.	$\mathrm{er}\; j$ -ten
(a)	$\mathbf{a}_{j}'\mathbf{a}_{j}=1$ für alle j .	$\Box \mathbf{X}$
	$\mathbf{a}_j \mathbf{a}_j'$ ist als dyadisches Produkt eine orthonormale Matrix, da orthonormal sind.	die \mathbf{a}_j
(c)	$\mathbf{a}_{j}'\mathbf{a}_{j'}=0$, da die Faktoren orthonormal sind.	
(d)	$\mathbf{a}_j = \vec{0}$, wenn die j-te Variable linear abhängig von den übrigen blen ist.	Varia-
anal Mer	fgabe: Sie sollen einen aus dichotomen Items bestehenden Fragelysieren und dazu die latenten Variablen bestimmen, die den befremalen unterliegen. Sie berechnen deshalb alle Paare von Iterespondierenden ϕ -Koeffizienten.	ragten
` /	ϕ -Koeffizienten sind keine richtigen Korrelationskoeffizienten, Antworten nur als entweder falsch (0) oder korrekt (1) kodiert w die Merkmale also nicht auf einer Intervallskala gemessen werde	verden, en. \square
(b)	$\phi_{ij} = .5$ für alle Variablen $i \neq j$ bedeutet, dass es bei n Iten latente Dimensionen gibt.	ns n/s

	(c)	Im Fall von $\phi_{ij} \approx .5$ für alle $i \neq j$ gibt es bei hinreichend großem Wert von n nur einen Eigenwert größer als 1.
	(d)	Die Randverteilungen $p_i \neq p_j$ für Itempaare $(i \neq j)$ sind wesentlich, um irrelevante Schwierigkeitsfaktoren zu vermeiden. \square Kommentar: Die Antwortalternativen sind leider suboptimal gewählt worden, weil nicht $\phi \approx .5$ eine wichtige Bedingung für eine sinnvolle Schätzung des Korrelationskoeffizienten ρ durch ϕ ist, sondern sondern $p_x = p_y = .5$; in diesem Fall kann ϕ jeden Wert zwischen -1 und +1 annehmen! Sorry!
8.	$nicht hat in \mathbf{y} = \mathbf{Klas}$	'gabe: Verurteilte Straftäter sollen als entweder rückfallgefährdet oder trückfallgefährdet klassifiziert werden. Für eine Gruppe von Straftätern man p Symptome (Prädiktoren) auf Intervallsskalen gemessen, so dass $u_1\mathbf{x}_1+u_2\mathbf{x}_2+\cdots+u_p\mathbf{x}_p$ und der Wert von \mathbf{y} soll eine möglichst fehlerfreie sifikation erlauben. Gesucht sind die "Gewichte" $u_k, \ k=1,\ldots,p$, um optimale Klassifikation zu gewährleisten.
	(a)	Der Ansatz ist schon deswegen falsch, weil kein Fehlerter m ${\bf e}$ in der Regressionsgleichung für ${\bf y}$ auftritt. $\hfill\Box$
	(b)	Der Ansatz ist schon deswegen falsch, weil sich menschliches Vedhalten nicht berechnen läßt. $\hfill\Box$
	(c)	Der Ansatz ist falsch, weil \mathbf{y} notwendig eine $(0, 1)$ -Skala sein müsste (nicht rückfällig, rückfällig), bei kontinuierlichen Prädiktoren \mathbf{x}_k muß abr \mathbf{y} ebenfalls kontinuierlich sein.
	(d)	Man muß $\mathbf{u} = (u_1, \dots, u_p)'$ so bestimmen, dass die Varianz der \mathbf{y} zwischen den beiden Gruppen (rückfällig versus nicht rückfällig) maximal wird relativ zur Varianz innerhalb der Gruppen. $\square \mathbf{X}$
9.	Auf	gabe: Es werde noch einmal der Ansatz von Aufgabe 8 betrachtet.
	(a)	${f y}$ ist eine Linearkombination der ${f x}_k, \ 1 \leq k \leq p$ und definiert deshalb eine Gerade in einem maximal p -dimensionalen Raum, der linearen Hülle der ${f x}_k$. Der Ansatz ${f y} = \sum_k u_k {f x}_k$ kann also nur funktionieren, wenn sich das Merkmal Rückfälligkeit auf einer 1-dimensionalen Skala abbilden läßt.
	(b)	Man kann die Varianzen-Kovarianzen zwischen den Gruppen in einer Matrix B zusammenfassen, und die Varianzen-Kovarianzen innerhalb der Gruppen in einer Matrix W . Die Maximierung Der Varianz "zwischen" relativ zur Varianz "innerhalb"
		i. bedeutet die Maximierung von $\mathbf{u}'B\mathbf{u}/\mathbf{u}'W\mathbf{u}=\lambda$ bezüglich \mathbf{u} . $\square \mathbf{X}$ ii. bedeutet die Bestimmung der \mathbf{u} für $W^{-1}B\mathbf{u}=\lambda\mathbf{u}$. $\square \mathbf{X}$ iii. \mathbf{u} als Eigenvektor von $W^{-1}B$ kann nur berechnet werden, wenn $W^{-1}B$ eine symmetrische Matrix ist. \square

(c) W = PDP', P die Eigenvektoren von W und $D = diag(d_1, \ldots, d_n)$ die Eigenwerte von W. Dann $W^{-1} = PD^{-1}P'$. Welche Implikationen haben kleine Eigenwerte von W? Bedenken Sie: $W^{-1} = \sum_k \frac{\mathbf{p}_k \mathbf{p}_k'}{d_k}$. i. Kleine Eigenwerte deuten auf Kollinearitäten der Prädiktoren, W^{-1} bedeutet große Varianz der Schätzungen für **u**. ii. Da $W^{-1}B\mathbf{u} = \lambda \mathbf{u}$ folgt, dass die Komponenten von \mathbf{u} zu klein ausfallen. iii. Da $W^{-1}B\mathbf{u} = \lambda \mathbf{u}$ folgt, dass die Komponenten von \mathbf{u} zu groß ausfallen. (d) Die Anzahl der Lösungen **u** für $W^{-1}B\mathbf{u} = \lambda \mathbf{u}$ entspricht dem Rang von $W^{-1}B$. i. Da $\mathbf{y} = \sum_k u_k \mathbf{x}_k$ eine Gerade im *p*-dimensionalen Raum der Prädiktoren definiert, muß eine der Lösungen \mathbf{u}_k ausgewählt werden, – man wählt die, deren zugehöriger Eigenwert λ maximal ist. \square ii. Verschiedene Lösungen \mathbf{u}_k können nicht orthogonal sein, da $W^{-1}B$ nicht notwendig symmetrisch ist¹. iii. Verschiedene Lösungen \mathbf{u}_k definieren einen orthogonalen Teilraum der linearen Hülle der \mathbf{x}_k mit den Achsen $\mathbf{y}_1, \dots, \mathbf{y}_r, r \leq p$. $\square \mathbf{X}$

 $^{^{1}\}mathrm{Die}$ Eigenvektoren symmetrischer Matrizen sind orthogonal.