Vektoren und Matrizen

Übungen 4 + Antworten: SVD und PCA

1. **Aufgabe:** Gegeben sei eine $(m \times n)$ -Datenmatrix: m = 200 Fälle, n = 50 Variablen. Was bedeutet es, wenn für diese Matrix gesagt werden kann, dass die 200 Zeilenvektoren in einem 5-dimensionalen Teilraum des \mathbb{R}^{200} liegen? Ist es in diesem Fall möglich, dass die 50 200-dimensionalen Spaltenvektoren in einem 5-dimensionalen Teilraum liegen?

Antwort: Es bedeutet, dass nur 5 linear unabhängige 200-dimensionale Vektoren als Basisvektoren benötigt werden, um die 50 200-dimensionalen Vektoren als Linearkombination dieser Teilbasis des 200-dimensionalen Raums darzustellen. Da der Rang einer Matrix die Anzahl der lin. unabhängigen Vektoren, die zur Darstellung sowohl der Spalten- wie der Zeilenvektoren benötigt werden angibt, können auch die 200 50-dimensionalen Zeilenvektoren durch nur 5, diesmal aber 50-dimensionale, linear unabhängige Vektoren als Linearkombinationen dargestellt werden.

- 2. **Aufgabe:** Es sei A eine (10×3) -Matrix. \mathbf{x} und \mathbf{y} seien Vektoren. Betrachten sie das Gleichungssystem $\mathbf{y} = A\mathbf{x}$.
 - (a) Welche notwendige Bedingung muß erfüllt sein, damit eine Lösungsvektor \mathbf{x} existiert?
 - (b) Wieviele Dimensionen hat der Vektorraum, in dem \mathbf{x} liegt, und wieviele Dimensionen hat der Vektorraum, in dem \mathbf{y} liegt?
 - (b) Die Matrix A und der Vektor \mathbf{y} seien vorgegeben. Läßt sich \mathbf{x} dann berechnen? Wenn ja, Welche Voraussetzung muß erfüllt sein?
 - (c) Existiert eine zu A inverse Matrix A^{-1} ?

Antwort: (a) $\mathbf{y} = A\mathbf{x}$ ist die Behauptung, dass \mathbf{y} eine Linearkombination der Spaltenvektgoren von A ist. Die notwendige Bedingung besteht darin, dass \mathbf{y} tatsächlich eine Linearkombination dieser Spaltenvektoren ist. So kann A eine $(m \times n)$ -Matrix sein, mit m > n; es gibt dann mehr Gleichungen als Unbekannte. \mathbf{y} ist notwendig ein m-dimensionaler Vektor, und \mathbf{x} ist n-dimensional. Da \mathbf{y} eine Linearkombination der Spalten von A sein muß, diese Spalten aber nur einen n-dimensionalen Teilraum des \mathbb{R}^m aufspannen können (dies ist die lineare Hülle $\mathcal{L}_s(A)$ der Spalten von A), kann es sein, dass \mathbf{y} kein Element dieses Teilraums ist, $\mathbf{y} \notin \mathcal{L}_s(A)$, sondern Element des Komplementärraums von $\mathcal{L}_s(A)$ ist. Dann findet man im ganzen Universum keinen Vektor \mathbf{x} , der \mathbf{y} als Linearkombination der Spalten von A darzustellen erlaubt.

- Zu (b) $\mathbf{x} \in \mathbb{R}^n$ (= n-dimensionaler Vektorraum), und $\mathbf{y} \in \mathbb{R}^m$.
- Zu (c) Damit A^{-1} existiert, muß (i) A quadratisch sein, und (ii) muß A volen Rang haben, d.h. die Zeilen- und Spaltenvektoren von A müssen linear unabhängig sein. Darüber ist aber in der Aufgabenstellung nichts ausgesagt worden, so dass man über die Existenz von A^{-1} nichts aussagen kann.
- 3. Aufgabe: Es seien A und B zwei nicht quadratische Matrizen.
 - (a) Welche Voraussetzungen müssen erfüllt sein, damit Sie ein Produkt C = AB berechnen können, und gilt dann AB = BA?
 - (b) Angenommen, das Produkt C kann berechnet werden. Sind die Spaltenvektoren von C dann Linearkombinationen der Spalten von A oder der Spalten von B?
 - (c) A habe den Rang $rg(A) = r_A$ und B habe den Rang $rg(B) = r_B < r_A$. Welche allgemeine Aussage läßt sich über den Rang von C machen, falls C berechenbar ist?
 - (d) Welche Bedingung muß notwendig erfüllt sein, damit die Spaltenvektoren von C Linearkombinationen der Zeilenvektoren von B sind? Die Bedingung muß nicht hinreichend sein. (Hinweis: Die Anzahlen der Zeilen und Spalten von C hängen von den Anzahlen der Zeilen und Spalten von A und B ab!)

Antwort: Zu (a), Es sei A eine $(m \times n)$ -Matrix und B sei eine $(r \times s)$ -Matrix. C = AB bedeutet, dass ein Spaltenvektor \mathbf{c}_k von C eine Linearkombination $A\mathbf{b}_k$ der Spalten von A ist, wobei die Komponenten von \mathbf{b}_k die Koeffizienten dieser Linearkombination sind. \mathbf{b}_k muß dann soviele Komponenten haben, wie es Spalten von A gibt, – d.h. die Anzahl der Spalten von A und die Anzahl der Zeilen von B müssen übereinstimmen; in diesem Fall muß also n = r gelten. AB = BA kann aus analogen Gründen höchsten dann gelten, wenn die Anzahl der Spalten von B auch gleich der Anzahl der Zeilen von A ist, d.h. eine notwendige, aber keinesfalls hinreichende Bedingung für AB = BA ist (i) n = s und (ii) s = m. Zu (b): Es gelte C = AB. Dann sind die Spalten von C Linearkombinationen der Spalten von A, und die Zeilenvektoren von C sind Linearkombinationen der Zeilenvektoren von B.

- Zu (c): $\operatorname{rg}(C) \leq \min(\operatorname{rg}(A), \operatorname{rg}(B)), \operatorname{d.g.} \operatorname{rg}(C) \leq \operatorname{rg}(B).$
- Zu (d): Es sei A eine $(m \times n)$ -Matrix, B eine $(r \times s)$ -Matrix. Ein Spaltenvektor \mathbf{c}_k von C muß dann ein Element der linearen Hülle $\mathcal{L}(A)$ sein, d.h. \mathbf{c}_k muß einer der möglichen Linearkombinationen der Spaltenvektoren von A sein, und dies muß für alle \mathbf{c}_k von C gelten. (Zur Übung können Sie diese Bedingung elaborieren: den Rang von A in Abhängigkeit von der Zeilenund Spaltenzahl von A betrachten etc)
- 4. **Aufgabe:** Die $(m \times n)$ -Datenmatrix X habe den Rang r. Bekanntlich läßt sich X dann stets als Produkt zweier Matrizen U und V schreiben, d.h. X = UV.

- (a) Welche Aussage läßt sich dann einerseits über die Anzahl der Zeilen von U und andererseits über die Zeilen und Spalten von V machen?
- (b) Was läßt sich über die Ränge von U und V sagen?
- (c) Müssen die Spaltenvektoren von U notwendig orthogonal sein?
- (d) Welche Beziehung besteht zwischen der SVD von X und der Beziehung X = UV?

Antwort: Zu (A): U muß eine $(m \times r)$ -Matrix sein, und V muß eine $(r \times n)$ -Matrix sein.

- Zu (b): $\operatorname{rg}(U) = \operatorname{rg}(V)$.
- Zu (c): Nein, lineare Unabhängigkeit genügt.
- Zu (d): $X = UV = Q\Lambda^{1/2}$. Da einerseits U eine $(m \times r)$ -Matrix ist und Q ebenfalls eine $(m \times r)$ -Matrix ist, wenn $\operatorname{rg}(X) = r$, so kann man U = Q oder $U = Q\Lambda^{1/2}$ annehmen $(\Lambda^{1/2}$ skaliert ja nur die Längen der Spaltenvektoren von Q, und diese Skalierung verändert den Rang von Q nicht). Je nach Wahl ist dann V = T' oder $V = \Lambda^{1/2}T'$.
- 5. **Aufgabe:** Eine $(m \times n)$ -Datenmatrix X habe den Rang r.
 - (a) Ist die Möglichkeit, die Spalten von X als Linearkommbinationen von Basisvektoren darzustellen, an Annahmen über die Wahrscheinlichkeitsverteilung der Elemente x_{ij} gekoppelt?
 - (b) Welche Dimensionalität haben die Basisvektoren, und welche Dimensionalität hat die lineare Hülle (i) der Spaltenvektoren von X, (ii) der Zeilenvektoren von X?
 - (c) Wieviele Möglichkeiten haben Sie, Basisvektoren für den Teilraum des \mathbb{R}^m zu wählen, in dem die Spaltenvektoren von X liegen?

Antworten: Zu (a): Nein. Alle Betrachtungen, die bisher in der Vorlesung angestellt worden sind, sind rein algebraischer Natur.

- Zu (b): Die Spaltenvektoren sind m-dimensional, und die Basisvektoren für sie muüssen dann ebenfalls m-dimensional sein. Die Basisvektoren für die Zeilenvektoren sind notwendig n-dimensional. Ist der Rang von X gleich r, so hat die lineare Hülle der Spaltenvektoren die Dimensionalitätä r, d.h. sie besteht aus der Menge der Linearkombinationen von r m-dimensionalen Vektoren; eine analoge Aussage gilt für die lineare Hülle der Zeilenvektoren.
- Zu (c): Unendlich viele (wenn man die Unterscheidung von abzählbar unendlich und überabzählbar unendlich vielen Möglichkeiten einmal außer Acht läßt).
- 6. **Aufgabe:** Für die Datenmatrix wird der Ansatz X = LT' gemacht, wobei die Transformation von Vektoren \mathbf{x} gemäß $\mathbf{y} = T\mathbf{x}$ eine Rotation der \mathbf{x} bedeuten soll.
 - (a) Welche Beziehung besteht zwischen den Zeilenvektoren $\tilde{\mathbf{x}}_i$ von X und den Zeilenvektoren $\tilde{\mathbf{L}}_i$ $(i=1,\ldots,m)$ von L?

- (b) Die Punktekonfiguration der Fälle wird durch die Endpunkte der Vektoren $\tilde{\mathbf{x}}_i$ definiert. Warum liegt der Endpunkt jedes Vektors $\tilde{\mathbf{x}}_i$ auf einem Ellipsoid \mathcal{E}_i und warum haben alle diese Ellipsoide dieselbe Orientierung?
- (c) Impliziert die unter (b) genannte Beziehung zwischen Datenpunkten und Ellipsoiden, dass die Daten multivariat normalverteilt sind?
- (d) Liegen die Variablen, die durch die Endpunkte der Spaltenvektoren \mathbf{x}_j von X repräsentiert werden, ebenfalls auf Ellipsoiden?

Antworten: Zu (a): $\tilde{\mathbf{x}}_i = T\tilde{\mathbf{L}}_i$. $i = 1, \ldots, m$.

- Zu (b): Die quadratische Form $\mathcal{E} = \{\mathbf{x}|M=M', \mathbf{x}'M\mathbf{x}=k\}$ definiert stets ein Ellipsoid, desses Orientierung relativ zu dem Koordinatensystem, in dem die \mathbf{x} liegen, von der symmetrischen Matrix M abhängt. Die für jeden Vektor $\tilde{\mathbf{x}}_i$ läßt sich die quadratische Form $\tilde{\mathbf{x}}_i'(X'X)\tilde{\mathbf{x}}_i=k_i$ betrachten; für alle i werden sie durch dieselbe Matrix X'X definiert, haben also dieselbe Orientierung.
- Zu (c): Nein, die Beziehung ist rein algebraischer Natur. Überdies ist die multivariate Normalverteilung durch eine quadratische Form $\mathbf{x}'(X'X)^{-1}\mathbf{x}$ definiert, also durch die Inverse von X'X, wobei die \mathbf{x} als zentriert vorausgesetzt werden.
- Zu (d): Nein. Denn X'X ist eine $(n \times n)$ -Matrix, die $\tilde{\mathbf{x}}_i$ sind ebenfalls n-dimensionale Vektoren, die \mathbf{x}_j (Spaltenvektoren von X) sind aber m-dimensional. Bei der PCA werden die Variablen durch die Ladungen a_{jk} (Ladung der j-ten Variablen auf der k-ten latenten Dimension) repräsentiert, und die Endpunkte der Vektoren, die die Variablen repräsentieren, liegen auf Hyperkugeln mit dem Radius 1.
- 7. **Aufgabe:** Es gelte wieder X = LT'. Die Annahmen, dass (i) die Spaltenvektoren von L sind orthogonal, und (ii) T repräsentiert eine Rotation implizieren, dass die Hauptachsen der unter (c) der vorangegangenen Aufgabe genannten Ellipsoide als neues Koordinatensystem betrachtet werden, dessen Achsen unkorrelierte latente Variablen repräsentieren.
 - (a) Wie werden die Koordinaten der Datenpunkte auf diesen Achsen berechnet?
 - (b) Durch welche Eigenschaft sind die Eigenvektoren von $X^{\prime}X$ charakterisiert?
 - (c) in welcher Beziehung stehen die Varianzen der Koordinaten der Datenpunkte (Fälle) auf den Hauptachsen der Ellipsoide zu den Eigenwerten von X'X?
 - (d) Für die zentrierten oder standardisierten Messwerte x_{ij} gilt gemäß dem Ansatz X = LT'

$$x_{ij} = \begin{cases} q_{i1}a_{j1} + q_{i2}a_{j2} + \dots + q_{in}a_{jn}, \text{ oder} \\ L_{i1}t_{j1} + L_{i2}t_{j2} + \dots + L_{in}t_{jn}. \end{cases}$$
(1)

Von welcher Umformulierung von X = LT' wurde hier Gebrauch gemacht und welche Zielsetzungen liegt Ihre Entscheidung für eine der beiden Mög-

lichkeiten zugrunde?

(e) Ein Sozialpsychologe berichtet, er habe bei der Analyse einer Datenmatrix X gefunden, dass die Ränge von X und L gleich r seien, T aber einen Rang s < r habe. Ein pädagogischer Psychologe stimmt dem Befund zu, weil er bei einer Datenanalyse gefunden habe, X und T hätten denselben Rang r gehabt, L aber habe einen Rang s > r gehabt; die Anzahl der Dimensionen für die Fälle einerseits und die Variablen andererseits könnten also verschieden sein. Können Sie Bedingungen angeben, unter denen die beiden Forscher recht haben?

Antworten: Zu (a): X = LT'; T eine Rotation impliziert T'TR = I, so dass XT = LT'T = L. Hat man T identifiziert, so läßt sich L und damit die Koordinaten der Fälle auf den "neuen" Koordinaten berechnen. Weiter: $X'X = TL'LT' = T\Lambda T'$, Λ eine Diagonalmatrix wegen der vorausgesetzten Orthogonalität der Spalten von L, und dann $(X'X)T = T\Lambda T'T = T\Lambda$, woraus folgt, dass T die Matrix der Eigenvektoren von X'X sein muß. T läßt sich berechnen (Verfahren der numerischen Mathematik).

Zu (b): Die Eigenvektoren sind orthogonal und werden als normalisiert betrachtet, d.h. $\|\mathbf{t}_k\|=1$ für alle $k=1,\ldots,n$. Diese Normalisierung ergibt sich im Rahmen der hier betrachteten Herleitung aus der Annahme, dass T eine Rotation repräsentiernen soll, – dann muß T orthonormal sein. Andererseits: es sei \mathbf{t} ein Eigenvektor von X'X. dann ist auch $\mathbf{s}=\mu\mathbf{t},\ \mu\in\mathbb{R}$ ein Eigenvektor, denn $(X'X)\mathbf{s}=\lambda\mathbf{s},\ \lambda$ der zu \mathbf{t} gehörende Eigenwert. Das Wesentliche am Eigenwert ist, dass $(X'X)\mathbf{s}$ und $\{lambda\mathbf{s}\}$ dieselbe Orientierung haben. Natürlich kürzt sich μ sofort aus der Gleichung $(X'X)\mathbf{s}=\lambda\mathbf{s}\}$ heraus, denn

$$(X'X)\mathbf{s} = (X'X)\mu\mathbf{t} = \mu(X'X)\mathbf{t} = \mu\lambda\mathbf{t} \Rightarrow (X'X)\mathbf{t} = \lambda\mathbf{t},$$

d.h. die Setzung $\|\mathbf{t}\| = 1$ ist keine Einschränkung der Allgemeinheit.

Zu (c): $\lambda_k = \mathbf{L}_k' \mathbf{L}_k = \|\mathbf{L}_k\|^2$ ist proportional (= gleich bis auf den Faktor 1/m) zur Varianz der L_{ik} ($\sum_i L_{ik}^2$), weil die \mathbf{L}_k zentriert sind (die Komponenten haben den Mittelwert Null), wenn die \mathbf{x}_j zentriert sind.

Zu (d): Von der SVD $X = Q\Lambda^{1/2}T'$, $L = Q\Lambda^{1/2}$ Im Fall $x_{ij} = \sum_k q_{ik}a_{jk}$ wird $A = T\Lambda^{1/2}$ gesetzt, $A = (a_{jk})$, im Fall $x_{ij} = \sum_k L_{ik}t_{jk}$ wird $L = Q\Lambda^{1/2}$ gesetzt. IM ersten Fall fokussiert man auf die Struktur der Variablen, im zweiten Fall auf die der Fälle ("Typen").

Zu (e): Angenommen, der Sozialpsychologe habe recht. da X=LT' vorausgesetzt wird, folgt, dass $\operatorname{rg}(X)=\operatorname{rg}(LT')$ ist. Allgemein gilt aber, dass $\operatorname{rg}(LT')\leq \min(\operatorname{rg}(L),\operatorname{rg}(T'))$ ist. Wäre also $\operatorname{rg}(T')=s< r$, so würde $\operatorname{rg}(LT')=s< r$ sein, im Widerspruch zur Aussage $\operatorname{rg}(X)=\operatorname{rg}(LT')$, die gelten $mu\beta$, weil die Matrizen X und LT' ja identisch sind. Also kann die Behauptung des Sozialpsychologen nicht korrekt sein, – er hat sich verrechnet oder den Ausdruck des von ihm benutzten Programms falsch gelesen. Für den pädagogischen Psychologen gilt ein analoges Argument: Er sagt,

 $\operatorname{rg}(X)=\operatorname{rg}(T),$ aber $\operatorname{rg}(L)=s>r.$ Es muß aber $\operatorname{rg}(X)=\operatorname{rg}(L'T)$ bzw $\operatorname{rg}(XT)=\operatorname{rg}(L)$ gelten. Es ist aber $\operatorname{rg}(XT)\leq \min(\operatorname{rg}(X),\operatorname{rg}(T))=r,$ wegen $\operatorname{rg}(X)X=\operatorname{rg}(T),$ so dass $\operatorname{rg}(L)=s>r$ unmöglich ist. Auch der pädagogische Psychologe ht sich geirrt. Es existieren keine Bedingungen, unter denen zumindest einer der beiden Forscher recht haben kann.

- 8. **Aufgabe:** Die rechte Seite der Gleichungen (1) enthält lauter unbekannte Grössen.
 - (a) Sie werden mit der Methode der Kleinsten Quadrate geschätzt.
 - (b) Sie lassen sich direkt aus den Daten ausrechnen.
 - (c) Sie lassen sich aus Hypothesen über die Beziehungen zwischen den Variablen herleiten.

Antworten: Zu (a): Nein.

Zu (b): Ja

Zu (c): Nein.

- 9. **Aufgabe:** Für eine gegebene Datenmatrix X berechnen Sie die Ladungen der Variablen.
 - (a) In welcher Beziehung stehen die Vektoren \mathbf{a}_j und \mathbf{a}_k der Ladungen für die Variablen j und k zu den Korrelationen r_{jk} ?
 - (b) Welche allgemeine Interpretation für die Ladung a_{jk} (j-te Variable, k-te latente Dimension) kennen Sie?
 - (c) Welche Implikation hat die Tatsache, dass $r_{jj} = 1$ für alle Variablen j = 1, ..., n, für die Position der Endpunkte der Ladungsvektoren \mathbf{a}_j ?
 - (d) Der Rang von X sei r < n; welchem geometrischen Gebilde entsprechen die Endpunkte der \mathbf{a}_i in diesem Fall?

Antworten: Zu (a): $r_{jk} = \sum_k a_{js} a_{ks}$:

- Zu (b): a_{jk} ist die Korrelation zwischen der j-ten Variablen und der k-ten latenten Dimension.
- Zu (c): Die Endpunkte der Ladungsvektoren für die Variablen liegen auf einer Hyperkugel mit dem Radius 1.
- Zu (d): Einer r-dimensionalen Hyperkugel mit dem Radius 1.
- 10. **Aufgabe:** X sei wieder eine $(m \times n)$ -Datenmatrix. Welche der folgenden Aussagen ist korrekt, und wenn ja, warum?, und wenn nicht, warum nicht?
 - (a) Die SVD $X = Q\Lambda^{1/2}T'$ läßt sich nur berechnen, wenn m > n.
 - (b) Die Matrix A der Ladungen ist stets quadratisch.
 - (c) Welcher Matrix entspricht das Produkt AA', können Sie Ihre Antwort herleiten?
 - (d) Welcher Matrix entspricht das Produkt A'A, können Sie Ihre Antwort herleiten?

Antworten: Zu (a): falsch

Zu (b): Im fehlerfreien Fall kann r < n gelten, A ist dann eine $(n \times r)$ Matrix: Numerisch findet man aber r = n, so dass im Allgemeinen eine

quadratische Matrix ausgegebebn wird.

Zu (c): $X = QA' \Rightarrow X'X = AQ'QA' = AA'$, da Q'Q = I. X'X isgt die Matrix der Kovarianzen oder der Korrelationen. Zu (d): $A = T\Lambda^{1/2} \Rightarrow A'A = \Lambda^{1/2}T'T\Lambda^{1/2} = \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.