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Chemometrics is a field of chemistry that studies the application of statistical methods to 
chemical data analysis. In addition to borrowing many techniques from the statistics and 
engineering literatures, chemometrics itself has given rise to several new data-analytical 
methods. This article examines two methods commonly used in chemometrics for predictive 
modeling-partial least squares and principal components regression-from a statistical per- 
spective. The goal is to try to understand their apparent successes and in what situations they 
can be expected to work well and to compare them with other statistical methods intended 
for those situations. These methods include ordinary least squares, variable subset selection, 
and ridge regression. 

KEY WORDS: Multiple response regression; Partial least squares; Principal components 
regression; Ridge regression; Variable subset selection. 

1. INTRODUCTION 

Statistical methodology has been successfully ap- 
plied to many types of chemical problems for some 
time. For example, experimental design techniques 
have had a strong impact on understanding and im- 
proving industrial chemical processes. Recently the 
field of chemometrics has emerged with a focus on 
analyzing observational data originating mostly from 
organic and analytical chemistry, food research, and 
environmental studies. These data tend to be char- 
acterized by many measured variables on each of a 
few observations. Often the number of such variables 
p greatly exceeds the observation count N. There is 
generally a high degree of collinearity among the 
variables, which are often (but not always) digiti- 
zations of analog signals. 

Many of the tools employed by chemometricians 
are the same as those used in other fields that pro- 
duce and analyze observational data and are more 
or less well known to statisticians. These tools in- 
clude data exploration through principal components 
and cluster analysis, as well as modern computer 
graphics. Predictive modeling (regression and clas- 
sification) is also an important goal in most appli- 
cations. In this area, however, chemometricians have 
invented their own techniques based on heuristic rea- 
soning and intuitive ideas, and there is a growing 
body of empirical evidence that they perform well in 
many situations. The most popular regression method 
in chemometrics is partial least squares (PLS) (H. 

Wold 1975) and, to a somewhat lesser extent, prin- 
cipal components regression (PCR) (Massy 1965). 
Although PLS is heavily promoted (and used) by 
chemometricians, it is largely unknown to statisti- 
cians. PCR is known to, but seldom recommended 
by, statisticians. [The Journal of Chemometrics (John 
Wiley) and Chemometrics and Intelligent Laboratory 
Systems (Elsevier) contain many articles on regres- 
sion applications to chemical problems using PCR 
and PLS. See also Martens and Naes (1989).] 

The original ideas motivating PLS and PCR were 
entirely heuristic, and their statistical properties re- 
main largely a mystery. There has been some recent 
progress with respect to PLS (Helland 1988; Lorber, 
Wangen, and Kowalski 1987; Phatak, Reilly, and 
Penlidis 1991; Stone and Brooks 1990). The purpose 
of this article is to view these procedures from a 
statistical perspective, attempting to gain some in- 
sight as to when and why they can be expected to 
work well. In situations for which they do perform 
well, they are compared to standard statistical meth- 
odology intended for those situations. These include 
ordinary least squares (OLS) regression, variable 
subset selection (VSS) methods, and ridge regression 
(RR) (Hoerl and Kennard 1970). The goal is to bring 
all of these methods together into a common frame- 
work to attempt to shed some light on their similar- 
ities and differences. The characteristics of PLS in 
particular have so far eluded theoretical understand- 
ing. This has led to unsubstantiated claims concern- 
ing its performance relative to other regression pro- 
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cedures, such as that it makes fewer assumptions 
concerning the nature of the data. Simply not under- 
standing the nature of the assumptions being made 
does not mean that they do not exist. 

Space limitations force us to limit our discussion 
here to methods that so far have seen the most use 
in practice. There are many other suggested ap- 
proaches [e.g., latent root regression (Hawkins 1973; 
Webster, Gunst, and Mason 1974), intermediate least 
squares (Frank 1987), James-Stein shrinkage (James 
and Stein 1961), and various Bayes and empirical 
Bayes methods] that, although potentially promis- 
ing, have not yet seen wide applications. 

1.1 Summary Conclusions 

RR, PCR, and PLS are seen in Section 3 to operate 
in a similar fashion. Their principal goal is to shrink 
the solution coefficient vector away from the OLS 
solution toward directions in the predictor-variable 
space of larger sample spread. Section 3.1 provides 
a Bayesian motivation for this under a prior distri- 
bution that provides no information concerning the 
direction of the true coefficient vector-all direc- 
tions are equally likely to be encountered. Shrinkage 
away from low spread directions is seen to control 
the variance of the estimate. Section 3.2 examines 
the relative shrinkage structure of these three meth- 
ods in detail. PCR and PLS are seen to shrink more 
heavily away from the low spread directions than 
RR, which provides the optimal shrinkage (among 
linear estimators) for an equidirection prior. Thus 
PCR and PLS make the assumption that the truth is 
likely to have particular preferential alignments with 
the high spread directions of the predictor-variable 
(sample) distribution. A somewhat surprising result 
is that PLS (in addition) places increased probability 
mass on the true coefficient vector aligning with the 
Kth principal component direction, where K is the 
number of PLS components used, in fact expanding 
the OLS solution in that direction. The solutions and 
hence the performance of RR, PCR, and PLS tend 
to be quite similar in most situations, largely because 
they are applied to problems involving high colli- 
nearity in which variance tends to dominate the bias, 
especially in the directions of small predictor spread, 
causing all three methods to shrink heavily along 
those directions. In the presence of more symmetric 
designs, larger differences between them might well 
emerge. 

The most popular method of regression regulari- 
zation used in statistics, VSS, is seen in Section 4 to 
make quite different assumptions. It is shown to cor- 
respond to a limiting case of a Bayesian procedure 
in which the prior probability distribution places all 
mass on the original predictor variable (coordinate) 

axes. This leads to the assumption that the response 
is likely to be influenced by a few of the predictor 
variables but leaves unspecified which ones. It will 
therefore tend to work best in situations character- 
ized by true coefficient vectors with components 
consisting of a very few (relatively) large (absolute) 
values. 

Section 5 presents a simulation study comparing 
the performance of OLS, RR, PCR, PLS, and VSS 
in a variety of situations. In all of the situations stud- 
ied, RR dominated the other methods, closely fol- 
lowed by PLS and PCR, in that order. VSS provided 
distinctly inferior performance to these but still con- 
siderably better than OLS, which usually performed 
quite badly. 

Section 6 examines multiple-response regression, 
investigating the circumstances under which consid- 
ering all of the responses together as a group might 
lead to better performance than a sequence of sep- 
arate regressions of each response individually on 
the predictors. Two-block multiresponse PLS is an- 
alyzed. It is seen to bias the solution coefficient vec- 
tors away from low spread directions in the predictor 
variable space (as would a sequence of separate PLS 
regressions) but also toward directions in the pre- 
dictor space that preferentially predict the high spread 
directions in the response-variable space. An (em- 
pirical) Bayesian motivation for this behavior is de- 
veloped by considering a joint prior on all of the 
(true) coefficient vectors that provides information 
on the degree of similarity of the dependence of the 
responses on the predictors (through the response 
correlation structure) but no information as to the 
particular nature of those dependences. This leads 
to a multiple-response analog of RR that exhibits 
similar behavior to that of two-block PLS. The two 
procedures are compared in a small simulation study 
in which multiresponse ridge slightly outperformed 
two-block PLS. Surprisingly, however, neither did 
dramatically better than the corresponding unire- 
sponse procedures applied separately to the individ- 
ual responses, even though the situations were de- 
signed to be most favorable to the multiresponse 
methods. 

Section 7 discusses the invariance properties of 
these regression procedures. Only OLS is equivar- 
iant under all nonsingular affine (linear-rotation 
and/or scaling) transformations of the variable axes. 
RR, PCR, and PLS are equivariant under rotation 
but not scaling. VSS is equivariant under scaling but 
not rotation. These properties are seen to follow from 
the nature of the (informal) priors and loss structures 
associated with the respective procedures. 

Finally, Section 8 provides a short discussion of 
interpretability issues. 

TECHNOMETRICS, MAY 1993, VOL. 35, NO. 2 

110 



STATISTICAL VIEW OF CHEMOMETRICS REGRESSION TOOLS 

2. REGRESSION as 

Regression analysis on observational data forms a 
major part of chemometric studies. As in statistics, 
the goal is to model the predictive relationships of a 
set of q response variables y = {Yl . . . y} on a set 
of p predictor variables x = {xl . . . xp} given a set 
of N (training) observations 

fyi, Xi}l {Y- li Yqi, Xli . . pi 

yj = ax, j = 1, q, (5) 
with the jth coefficient vector being aj = (a . . . 
ajp) or in matrix notation 

y = Ax (6) 
with the q x p matrix of regression coefficients being 

(1) 
on which all of the variables have been measured. 
This model is then used both as a descriptive statistic 
for interpreting the data and as a prediction rule for 
estimating likely values of the response variables when 
only values of the predictor variables are available. 
The structural form of the predictive relationship is 
taken to be linear: 

p 
Yj = ajo + Z ajkxk, j = 1, q. (2) 

k=l 

The problem then is to use the training data (1) to 
estimate the values of the coefficients {ajk}qi 1k=0 
appearing in Model (2). 

In nearly all chemometric analyses, the variables 
are standardized ("autoscaled"): 

A = [ajk]. (7) 
The dominant regression methods used in che- 

mometrics are PCR and PLS. The corresponding 
methods most used by statisticians (in practice) are 
OLS, RR, and VSS. The goal of this article is to 
compare and contrast these methods in an attempt 
to identify their similarities and differences. The next 
section starts with brief descriptions of PCR, PLS, 
and RR. (It is assumed that the reader is familiar 
with OLS and the various implementations of VSS.) 
We consider first the case of only one response vari- 
able (q = 1), since most of their similarities and 
differences emerge in this simplified setting. Multi- 
variate regression (q > 1) is discussed in Section 6. 

2.1 Principal Components Regression 

y <- (yj - yj)/[ave(yj 
- 

yj)2]12 

Xk --(Xk - 
Xk)/[ave(Xk - Xk)2]1/2 

with 
y = ave(yj) 

Xk = ave(xk), 

PCR (Massy 1965) has been in the statistical lit- 
erature for some time, although it has seen relatively 

(3) little use compared to OLS and VSS. It begins with 
the training-sample covariance matrix of the predic- 
tor variables 

(4) 
where the averages are taken over the training data 
(1); that is, 

N 

ave(r) = , 
Ni=1 

where 77 is the quantity being averaged. (This no- 
tational convention will be used throughout the ar- 
ticle.) The analysis is then applied to the stan- 
dardized variables and the resulting solutions 
transformed back to reference the original locations 
and scales of the variables. The regression methods 
discussed later are always assumed to include con- 
stant terms (2), thus making them invariant with re- 
spect to the variable locations so that translating them 
to all have zero means is simply a matter of conven- 
ience (or numerics). Most of these methods are not, 
however, invariant to the relative scaling of the vari- 
ables so that choosing them to all have the same scale 
is a deliberate choice on the part of the user. A 
different choice would give rise to different estimated 
models. This is discussed further in Section 7. 

After autoscaling the training data, the regression 
models (2) (on the training data) can be expressed 

V = ave(xxT) (8) 
and its eigenvector decomposition 

p 
V = ekvkvk. (9) 

k=l 

Here {e2}2 are the eigenvalues of V arranged in de- 
scending order (el > e2 > * * > ep) and {vk}p their 
corresponding eigenvectors. PCR produces a se- 
quence of regression models {0 . . YR} with 

K 

YK = Z [ave(yvkx)/ek]vkx, K = 1, R, (10) k=O 

with R being the rank of V (number of nonzero e2). 
The Kth model (10) is just the OLS regression of y 
on the "variables" {Zk = VkX}0 with the convention 
that for K = 0 the model is just the response mean, 
yo = 0 (3). The goal of PCR is to choose the par- 
ticular model ^K with the lowest prediction mean 
squared error 

K* = argmin ave(y - K)2, (11) 
OCKCR 

where ave is the average over future data, not part 
of the training sample. The quantity K can thus be 

TECHNOMETRICS, MAY 1993, VOL. 35, NO. 2 

111 



ILDIKO E. FRANK AND JEROME H. FRIEDMAN 

considered a meta parameter of the procedure whose 
value is to be estimated from the training data through 
some model-selection procedure. In chemometrics, 
model selection is nearly always done through or- 
dinary cross-validation (CV) (Stone 1974), 

N 

K = argmin (Yi - YK\i)2, (12) 
O-<KR i= 1 

where YK\i is the Kth model (10) computed on the 
training sample with the ith observation removed. 
There are many other model selection criteria in the 
statistics literature [e.g., generalized cross-validation 
(Craven and Wahba 1979), minimum descriptive 
length (Rissiden 1983), Bayesian information crite- 
rion (Schwartz 1978), Mallows's Cp (Mallows 1973), 
etc.] that can also be used. (A discussion of their 
relative merits is outside the scope of this article.) 

2.2 Partial Least Squares Regression 
PLS was introduced by Wold (H. Wold 1975) and 

has been heavily promoted in the chemometrics lit- 
erature as an alternative to OLS in the poorly con- 
ditioned or ill-conditioned problems encountered 
there. It was presented in algorithmic form as a mod- 
ification of the NIPALS algorithm (H. Wold 1966) 
for computing principal components. Like PCR, PLS 
produces a sequence of models {KxK} [R = rank V 
(8)] and estimates which one is best through CV (12). 
The particular set of models constituting the (or- 
dered) sequence are, however, different from those 
produced by PCR. Wold's PLS algorithm is pre- 
sented in Table 1. [To simplify the description, 
random-variable notation is adopted; that is, a single 
symbol is used to represent the collection of values 
(scalar or vector) of the corresponding quantity over 
the data, and the observation index is omitted. This 
convention is used throughout the article.] 

At each step, K (For loop pass, lines 2-10) y re- 
siduals from the previous step (yK- ) are partially 
regressed on x residuals from the previous step (xK_ ). 
In the beginning (line 1) these residuals are initialized 
to the original (standardized) data. The partial 

regression consists of computing the covariance vec- 
tor wK (line 3) and then using it to form a linear 
combination ZK of the x residuals (line 4). The y 
residuals are then regressed on this linear combi- 
nation (line 5), and the result is added to the model 
(line 6) and subtracted from the current y residuals 
to form the new y residuals YK (line 7) for the next 
step. New x residuals (xK) are then computed (line 
8) by subtracting from xK 1 its projection on zk. The 
test (line 9) will cause the algorithm to terminate 
after R steps, where R is the rank of V (8). 

This PLS algorithm produces a sequence of models 
{YK} (line 1 and line 6) on successive passes through 
the For loop. The one (9K) that minimizes the CV 
score (12) is selected as the PLS solution. Note that 
straightforward application of many of the competing 
model-selection criteria is not appropriate here since, 
unlike PCR and RR, PLS is not a linear modeling 
procedure; that i ththe response values {yi}N enter 
nonlinearly into the model estimates {ji}. 

The algorithm in Table 1 is the one first proposed 
by Wold that defined PLS regression. Since its in- 
troduction, several different algorithms have been 
proposed that lead to the same sequence of models 
{VK}I (e.g., see Naes and Martens 1985; Wold, Ruhe, 
Wold, and Dunn 1984). Perhaps the most elegant 
formulation (Helland 1988) is shown in Table 2. 

Table 2 shows that the Kth PLS model YK can be 
obtained by an OLS regression (OLS - line 5) of 
the response y on the K linear combinations {Zk = 

(Vk- s) TX}. 

2.3 Ridge Regression 

RR (Hoerl and Kennard 1970) was introduced as 
a method for stabilizing regression estimates in the 
presence of extreme collinearity, V (8) being singular 
or nearly so. The coefficients of the linear model (5) 
are taken to be the solution of a penalized least squares 
criterion with the penalty being proportional to the 
squared norm of the coefficient vector a: 

aA = argmin[ave(y - ax)2 + AaTa]. 
a 

(13) 

The solution is 

Table 1. Wold's PLS Algorithm 

(1) Initialize: yo <- y; xo <- x; Yo <- 0 
(2) For K 1 to p do: 
(3) WK = ave(YK-1XK-1) 
(4) ZK = WKTXK 1 
(5) rK = [ave(yK_ ZK)/ave(zK)]ZK 
(6) YK = YK-1 + rK 
(7) YK = YK- -1 rK 
(8) XK = XK-1 - [ave(zKxK_,)/ave(zK)]ZK 
(9) if ave(xKxK) = 0 then Exit 

(10) end For 

aA = (V + AI)- s, 

Table 2. Helland's PLS Algorithm 

(1) V = ave(xxT) 
(2) s = ave(yx) 
(3) For K = 1 to R do: 
(4) SK = VK-s 
(5) YK = OLS[y on {sTx}K] 
(6) end For 
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with 

s = ave(yx) (15) 

and I being the p x p identity matrix. The inverse 
of the (possibly) ill-conditioned predictor-variable 
covariance matrix V is thus stabilized by adding to 
V a multiple of I. The degree of stabilization is reg- 
ulated by the value of the "ridge" parameter A > 0. 
A value of A = oo results in the model being the 
response mean y = 0, whereas A = 0 gives rise to 
the unregularized OLS estimates. A value for A in 
any particular situation is generally obtained by con- 
sidering it to be a meta parameter of the procedure 
and estimating it through some model-selection pro- 
cedure such as CV. Since here the response values 
{Yi}l do enter linearly in the model estimates {.9i}j, 
any of the competing model-selection criteria can 
also be straightforwardly applied (see Golub, Heath, 
and Wahba 1979). 

3. A COMPARISON OF PCR, PLS, AND RR 

From their preceding algorithmic descriptions, it 
might appear that PCR, PLS, and RR are very dif- 
ferent procedures leading to quite different model 
estimates. In this section we provide a heuristic com- 
parison that suggests that they are, in fact, quite 
similar, in that they are all attempting to achieve the 
same operational goal in slightly different ways. That 
goal is to bias the solution coefficient vector a (5) 
away from directions for which the projected sample 
predictor variables have small spread; that is, 

var(aTx/lal) = ave(aTx/lal)2 = small, (16) 
where the average is over the training sample. 

This comparison consists of regarding the regres- 
sion procedure as a two-step process as in VSS (Stone 
and Brooks 1990); first a K-dimensional subspace of 
p-dimensional Euclidean space is defined, and then 
the regression is performed under the restriction that 
the coefficient vector a lies in that subspace: 

K 

a= akck, (17) 
k=l 

where the unit vectors {ck}f span the prescribed 
subspace with ckck = 1. The regression procedures 
can be compared by the way in which they define 
the subspace {ck}f and the manner in which the 
(constrained) regression is performed. 

First, consider OLS in this setup. Here the sub- 
space is defined by the (single) unit vector that max- 
imizes the sample correlation (squared) between the 
response and the corresponding linear combination 
of the predictor variables 

COLS = argmax corr2(y, CTX); (18) 
CTc= 1 

the OLS solution is then a simple least squares 
regression of y on COLSX, 

YOLS = [ave(ycOLsx)/aveO(coLs))2] OLSX. (19) 
RR can also be cast into this framework. As in 

OLS, the subspace is defined by a single unit vector, 
but the criterion that defines that vector is somewhat 
different: 

var(cTx) 
CRR = argmax corr2(y, cTx) var(cTx) 

cTc=l var(crx) + A' 
(20) 

where A is the ridge parameter [(13)-(14)]. The ridge 
solution is then taken to be a (shrinking) ridge regres- 
sion of y on CRRX with the same value for the ridge 
parameter 

ave (yCRX) T 
YRR ae( RRX) _ave(cTRX)2 + 

R (21) 

(See Appendix.) 
PCR defines a sequence of K-dimensional sub- 

spaces each spanned by the first K eigenvectors (9) 
of V (8). Thus each ck (1 < k < R) is the solution 
to 
c 

ck(PCR) argmax var(cTx). 
{TVC = 0} -1 

TC= 1 

(22) 

The first constraint in (22) (V orthogonality) ensures 
that the linear combinations associated with the dif- 
ferent solution vectors are uncorrelated over the 
training sample 

corr(ckx, cfx) = 0, k : 1. (23) 

As a consequence of this and the criterion (22), they 
also turn out to be orthogonal cTc, = 0, k = 1. The 
Kth PCR model is given by a least squares regression 
of the response on the K linear combinations 
{ckx}f. Since they are uncorrelated (23), this reduces 
to the sum of univariate regressions on each one (10). 

PLS regression also produces a sequence of K- 
dimensional subspaces spanned by successive unit 
vectors, and then the Kth PLS solution is obtained 
by a least squares fit of the response onto the cor- 
responding K-linear combinations in a strategy sim- 
ilar to PCR. The only difference from PCR is in the 
criterion used to define the vectors that span the K- 
dimensional subspace and hence the corresponding 
linear combinations. The criterion that gives rise to 
PLS (Stone and Brooks 1990) is 

ck(PLS) = argman corr2(y, cTx)var(cTx). (24) 
{cTVc = 0}- 1 

crc=1 

As with PCR the vectors ck(PLS) are constrained to 
be mutually V orthogonal so that the corresponding 
linear combinations are uncorrelated over the train- 
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ing sample (23). This causes the K-dimensional least 
squares fit to be equivalent to the sum of K univariate 
regressions on each linear combination separately, 
as with PCR. Unlike PCR, however, the {ck(PLS)}K 
are not orthogonal owing to the different criterion 
(24) used to obtain them. 

The OLS criterion (18) is invariant to the scale of 
the linear combination of cTx and gives an unbiased 
estimate of the coefficient vector and hence the 
regression model [(18)-(19)]. The criteria associated 
with RR (20), PCR (22), and PLS (24) all involve 
the scale of cTx through its sample variance, thereby 
producing biased estimates. The effect of this bias is 
to pull the solution coefficient vector away from the 
OLS solution toward directions in which the pro- 
jected data (predictors) have larger spread. The de- 
gree of this bias is regulated by the value of the 
model-selection parameter. 

For RR, setting A = 0 [(20)-(21)] yields the un- 
biased OLS solution, whereas A > 0 introduces in- 
creasing bias toward larger values of var(cTx) (20) 
and increased shrinkage of the length of the solution 
coefficient vector (21). For small values of A, the 
former effect is the most pronounced; for example, 
for A > 0 the RR solution will have no projection in 
any subspace for which var(cTx) = 0, and very little 
projection on subspaces for which it is small. 

In PCR, the degree of bias is controlled by the 
value of K, the dimension of the constraining sub- 
space spanned by {ck(PCR)}f (22)-that is, the 
number of components K used (10). If K = R [rank 
of V (8)], one obtains an unbiased OLS solution. For 
K < R, bias is introduced. The smaller the value of 
K, the larger the bias. As with RR, the effect of this 
bias is to draw the solution toward larger values of 
var(cTx), where c is a unit vector in the direction of 
the solution coefficient vector a (5) (c = a/la|). This 
is because constraining c to lie in the subspace spanned 
by the first K eigenvectors of V [(8)-(9)] places a 
lower bound on the sample variance of cTx, 

var(cTx) - e2. (25) 

Since the eigenvectors (and hence the subspaces) are 
ordered on decreasing values of eK, increasing K has 
the effect of easing this restriction, thereby reducing 
the bias. 

For PLS, the situation is similar to that of PCR. 
The degree of bias is regulated by K, the number of 
components used. For K = R, an unbiased OLS 
solution is produced. Decreasing K generally in- 
creases the degree of bias. An exception to this oc- 
curs when V = I (totally uncorrelated predictor vari- 
ables), in which case an unbiased OLS solution is 
reached for K = 1 and remains the same for all K 
(though for K - 2 the regressions are singular, all 

of the regressors being identical). This can be seen 
from the PLS criterion (24). In this case, var(cTx) = 
1 for all c, and the PLS criterion reduces to that for 
OLS (18). With this exception, the effect of decreas- 
ing K is to attract the solution coefficient vector to- 
ward larger values of var(cTx) as in PCR. For a given 
K, however, the degree of this attraction depends 
jointly on the covariance structure of the predictor 
variables and the OLS solution, which in turn de- 
pends on the sample response values. This fact is 
often presented as an argument in favor of PLS over 
PCR. Unlike PCR, there is no sharp lower bound 
on var(cTx) for a given K. The behavior of PLS com- 
pared to PCR for changing K is examined in more 
detail in Section 3.2. 

3.1 Bayesian Motivation 

Inspection of the criteria used by RR (20), PCR 
(22), and PLS (24) shows that they all can be viewed 
as applying a penalty to the OLS criterion (18), where 
the penalty increases as var(cTx) decreases. A natural 
question to ask is: Under what circumstances should 
this lead to improved performance over OLS? It is 
well known (James and Stein 1961) that OLS is in- 
admissible in that one can always achieve a lower 
mean squared estimation error with biased estimates. 
The important question is: When can these esti- 
mators substantially improve performance and which 
one can do it best? 

Some insight into these questions can be provided 
by considering a (highly) idealized situation. Suppose 
that in reality 

y = aTx + e (26) 
for some (true) coefficient vector a and E is an ad- 
ditive (iid) homoscedastic error, with zero expecta- 
tion and variance o-2, 

E(E) = 0, E(E2) = -2. (27) 
Since all of the estimators being considered here are 
equivariant with respect to rotations in the predictor 
variable space (after standardization), we will con- 
sider (for convenience) the coordinate system in which 
the predictor variables are uncorrelated; that is, 

V = diag(e . .. ep). 

Let a be an estimate of o (26); that is, 

y(x) = arx 

(28) 

(29) 
for a given point x in the predictor space (not nec- 
essarily one of the training-sample points). Consider 
training samples for which the (sample) predictor 
covariance matrix V has the eigenvalues (28). 

The mean squared error (MSE) of prediction at x 
is 

MSE[P(x)] = EE[aTx - arx]2, (30) 
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with the expected value over the distribution of the 
errors e (26). Since a (the truth) is unknown, the 
MSE (at x) for any particular estimator is also un- 
known. One can, however, consider various (prior) 
probability distributions ir(a) on a and compare the 
properties of different estimators when the relative 
probabilities of encountering situations for which a 
particular a (26) occurs is given by that distribution. 
For a given rr(a), the mean squared prediction error 
averaged over the situations it represents is 

E ,aE [ox - aTx]2. (31) 
A simple and relatively unrestrictive prior probabil- 
ity distribution is one that considers all coefficient 
vector directions a/Iao[ equally likely; that is, the prior 
distribution depends only in its norm laot2 = otLa, 

rr(a) = r(arTa). (32) 
For this exercise, we will consider simple linear 

shrinkage estimates of the form 

aj = fjj, j = 1, p, (33) 
where a is the OLS estimate and the {fj}q are shrink- 
age factors taken to be independent of the sample 
response values. In this case, the mean squared pre- 
diction error becomes [(33) and (31)] 

-2 

MSEU[(x)] = E,E (a (j- fjj)x . (34) 
,j= 1 

Averaging over a using the probability distribution 
given by (32) [taking advantage of the fact that 
E,(aaT) = I ? E,ja2, with I being the identity ma- 
trix] yields 

p 

MSEU(x)] = E [(1 - f)2E,jl2l/p 
j=l 

+ fj2c2l(Ne2)]x2. (35) 
Here (35) E,Ja|2 is the expected value of the length 
of the coefficient vector a under the prior (32), p is 
the number of predictor variables, 02 is the variance 
of the error term [(26)-(27)], N is the training-sample 
size, and {e2}q are the eigenvalues of the (sample) 
predictor-variable covariance matrix (28), which in 
this case are the sample variances of the predictor 
variables due to our choice of coordinate system (28). 

The two terms within the brackets (35) that con- 
tribute to the MSE at x have separate interpretations. 
The first term depends on (the distribution of the) 
truth (a) and is independent of the error variance or 
the predictor-variable distribution. It represents the 
bias (squared) of the estimate. The second term is 
independent of the nature of the true coefficient vec- 
tor a and depends only on the experimental situa- 
tion-error variance and predictor-design sample. It 

is the variance of the estimate. Setting {fj = 1}f (33) 
yields the least squares estimates, which are unbiased 
but have variance given by the second term in (35). 
Reducing any (or all) of the {fj}q to a value less than 
1 causes an increase in bias [first term (35)] but de- 
creases the variance [second term (35)]. This is the 
usual bias variance trade-off encountered in nearly 
all estimation settings. [Setting any (or all) of the 
{fj}q to a value greater than 1 increases both the bias 
squared and the variance.] 

This expression (35) for the MSE (in a simplified 
setting) illustrates the important fact that justifies the 
qualitative behavior of RR, PCR, and PLS discussed 
previously, namely, the shrinking of the solution 
coefficient vector away from directions of low (sam- 
ple) variance in the predictor-variable space. One 
sees from the second term in (35) that the contri- 
bution to the variance of the model estimate from a 
given (eigen) direction (xj) is inversely proportional 
to the sample predictor variance e2 associated with 
that direction. Directions with small spread in the 
predictor variables give rise to high variance in the 
model estimate. 

The values of {fj}qthat minimize the MSE (35) are 

fi = ej/(ej + A), j = l,p (36) 

with 

A = p(cr2/Ea la2)/N. (37) 

The quantity A [(36)-(37)] is the number of (pre- 
dictor) variables times the square of the noise-to- 
signal ratio, divided by the training-sample size. 
Combining (33), (36), and (37) gives the optimal 
(minimal MSE) linear shrinkage estimates 

e2 
e2+A j= 1, p. 

One sees that the unbiased OLS estimates {&j}f are 
differentially shrunk with the relative amount of 
shrinkage increasing with decreasing predictor vari- 
able spread ej. The amount of differential shrinkage 
is controlled by the quantity A (37): The larger the 
value of A, the more differential shrinkage, as well 
as more overall global shrinkage. The value of A in 
turn is given by the inverse product of the signal/ 
noise squared and the training-sample size. 

It is important to note that this high relative shrink- 
age in directions of small spread in the (sample) 
predictor-design distribution enters only to control 
the variance and not because of any prior belief that 
the true coefficient vector a (26) is likely to align 
with the high spread directions of predictor design. 
The prior distribution on a, 7r(a) (32), that leads to 
this result (38) places equal mass on all directions 
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a/lal and by definition has no preferred directions 
for the truth. Therefore, one can at least qualitatively 
conclude that the common property of RR, PCR, 
and PLS of shrinking their solutions away from low 
spread directions mainly serves to reduce the vari- 
ance of their estimates, and this is what gives them 
generally superior performance to OLS. The results 
given by (35), (37), and (38) indicate that their de- 
gree of improvement (over OLS) will increase with 
decreasing signal-to-noise ratio and training-sample 
size and increasing collinearity as reflected by the 
disparity in the eigenvalues (28) of the predictor- 
variable covariance matrix [(8)-(9)]. 

It is well known that (38) is just RR as expressed 
in the coordinate system defined by the eigenvectors 
of the sample predictor-variable covariance matrix 
[(8)-(9)]. Thus these results show (again well known) 
that RR is a linear shrinkage estimator that is optimal 
(in the sense of MSE) among all linear shrinkage 
estimators for the prior 7r(a) assumed here (32) and 
A (37) known. PCR is also a linear shrinkage estimator 

aj(PCR) = cji I(e2 - e2), (39) 

where K is the number of components used and the 
second factor I(.) takes the value 1 for nonnegative 
argument values and 0 otherwise. Thus RR domi- 
nates PCR for an equidirection prior (32). PLS is 
not a linear shrinkage estimator, so RR cannot be 
shown to dominate PLS through this argument. 

3.2 Shrinking Structure 

One way to attempt to gain some insight into the 
relative properties of RR, PCR, and PLS is to ex- 
amine their respective shrinkage structures in various 
situations. This can be done by expanding their so- 
lutions in terms of the eigenvectors of the predictor- 
sample covariance matrix [(8)-(9)] and the OLS es- 
timate a: 

a(RR: PCR: PLS) 
p 

= f(RR: PCR: PLS)ajvj. (40) j=1 

Here &j is the projection of the OLS solution on vj 
(the jth eigenvector of V), 

aj = ave(yvTx)/e2, (41) 

and {fj()}g can be regarded as a set of factors along each of these eigendirections that scale the OLS so- 
lution for each of the respective methods. As shown 
in (36) and (39), fj(RR) = ej/(e2 + A) and 

fj(PCR) = 1 e2 > e2 

= 0 e < e2, (42) 

both of which are linear in that they do not involve 
the sample response values {yi}'. 

The corresponding scale factors for PLS are not 
linear in the response values. For a K-component 
solution, they can be expressed as 

K 

fjK(PLS) = E 3ke2k, 
k=l 

where the vector p = {f,k} is given by p = W- w, 
with the K components of the vector w being 

p 

wk = E a2e2(k + 1) k = 
i I 

j=1 

and the elements of the K x K matrix W are given 
by 

p 

Wkl = E ae2( k++1). 
j=1 

They depend on the number of components K used 
and the eigenstructure {e2}g (as do the factors for RR 
and PCR), but not in a simple way. They also depend 
on the OLS solution {a}&}, which in turn depends on 
the response values {yi}N. The PLS scale factors are 
seen to be independent of the length of the OLS 
solution |a&2, depending only on the relative values 
of {&j}g. Note that for all of the methods studied here 
the estimates (for a given value of the meta param- 
eter) depend on the data only through the vector of 
OLS estimates {a&j} and the eigenvalues of the pre- 
dictor-covariance matrix {e2}'. 

Although the scale factors for PLS (43) cannot be 
expressed by a simple formula (as can those for RR 
and PCR), they can be computed for given values 
of K, {ej2}, and {&j}P and compared to those of RR 
and PCR [(36) and (42)] for corresponding situa- 
tions. This is done in Figures 1-4, for p = 10. In 
each figure, the scale factors f, (PLS) - flo (PLS) 
are plotted (in order-solid line) for the first six (K = 1, 6) component PLS models. Each of the four 
figures represents a different situation in terms of the 
relative values of {e2}g and {aj}. Also plotted in each 
frame for comparison are the corresponding shrink- 
age factors for RR (dashed line) and PCR (dotted 
line) for that situation, normalized so that they give 
the same overall shrinkage (sh = |a|/|a|); that is, for 
RR the ridge parameter A (36) is chosen so that the 
length of the RR solution vector is the same as that 
for PLS (laRRI = |apLSI). In the case of PCR, the 
number of components was chosen so that the re- 
spective solution lengths were as close as possible 
(lapCRI = |apLS). The three numbers in each frame 
give the number of PLS components, the correspond- 
ing shrinkage factor (sh = l|a/lJl), and the ridge pa- rameter (A) that provides that overall shrink- 
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Figure 1. Scale Factors for PLS (solid), RR (dashed), and PCR (dotted) for Neutral Least Squares Solution and High Collinearity. 
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age. The four situations represented in Figures 1-4 
are as follows: {&j = 1} {eJ - 1/j2}ij (neutral &'s, 
high collinearity), {&j = 1} {e2 ~- /j} (neutral a's, 

moderate collinearity), {&a = I/j} {e2 1/j2}q (fa- 
vorable t's, high collinearity), and {aj = j}j {e2 - 

1/j2}q (unfavorable &'s, high collinearity). 
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Figure 2. Scale Factors for PLS (solid), RR (dashed), and PCR (dotted) for Neutral Least Squares Solution and Moderate 
Collinearity. The entries in each frame correspond to those in Figure 1. 

In Figure 1, the OLS solution is taken to project 
equally on all eigendirections (neutral) and the ei- 
genvalue structure is taken to be highly peaked to- 

ward the larger values (high collinearity). The one- 
component PLS model (K = 1, upper left frame) is 
seen to dramatically shrink the OLS coefficients for 
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the smallest eigendirections. It slightly "expands" 
the OLS coefficient for the largest (first) eigendirec- 
tion, fl(PLS) > 1. The overall shrinkage is substan- 

tial; the length of the K = 1 PLS solution coefficient 
vector is about 35% of that for the OLS solution. 
For the same overall shrinkage, the relative shrink- 
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age of RR tracks that of PLS but is somewhat more 
moderate. This is a consistent trend throughout all 
situations (Figs. 1-4). For PCR, a two-component 

model (K = 2) gives roughly the same overall shrink- 
age as the K = 1 PLS solution. Again this is a trend 
throughout all situations in that one gets roughly the 

TECHNOMETRICS, MAY 1993, VOL. 35, NO. 2 

120 

in 

In- 

0 

q - 

0 

0 

U, 

0 

u. 

0 q. 

U, 
0 

o 

0 

d 

2 4 



STATISTICAL VIEW OF CHEMOMETRICS REGRESSION TOOLS 

same overall shrinkage for KpcR - 2KPLS. As the 
number of PLS components is increased (left to right, 
top to bottom frames) the overall shrinkage applied 
to the OLS solution is reduced and the relative 
shrinkage applied to each eigendirection becomes 
more moderate. For K = 6, the PLS solution is very 
nearly the same as the OLS solution {fj(PLS) 
1}q even though it only becomes exactly so for K = 
10. Again this feature is present throughout all sit- 
uations (Figs. 1-4). 

An interesting aspect of the PLS solution is that 
(unlike RR and PCR) it not only shrinks the OLS 
solution in some eigendirections (fj < 1) but expands 
it in others (fj > 1). For a K-component PLS solu- 
tion, the OLS solution is expanded in the subspace 
defined by the eigendirections associated with the 
eigenvalues closest to the Kth eigenvalue. Directions 
associated with somewhat larger eigenvalues tend to 
be slightly shrunk, and those with smaller eigenval- 
ues are substantially shrunk. Again this behavior is 
exhibited throughout all of the situations studied here. 
The expression for the mean squared prediction error 
(35) suggests that, at least for linear estimators, using 
any fj > 1 can be highly detrimental because it in- 
creases both the bias squared and the variance of the 
model estimate. This suggests that the performance 
of PLS might be improved by using modified scale 
factors {fj(PLS)}g, where j(PLS) - min(fj(PLS), 1), 
although this is not certain since PLS is not linear 
and (35) was derived assuming linear estimates. It 
would, in any case, largely remove the preference of 
PLS for (true) coefficient vectors that align with the 
eigendirections whose eigenvalues are close to the 
Kth eigenvalue. 

The situation represented in Figure 2 has the same 
(neutral) OLS solution but less collinearity. The 
qualitative behavior of the PLS, RR, and PCR scale 
factors are seen to be the same as that depicted in 
Figure 1. The principal difference is that PLS applies 
less shrinkage for the same number of components 
and (nearly) reaches the OLS solution for K - 4. 
Note that for no collinearity (all eigenvalues equal) 
PLS produces the OLS solution with the first com- 
ponent (K = 1). 

Figures 3 and 4 examine the high collinearity sit- 
uation for different OLS solutions. In Figure 3, the 
OLS solution is taken to be aligned with the major 
axes of the predictor design. The relative PLS shrink- 
age for different eigendirections for this favorable 
case is seen to be similar to that for the neutral case 
depicted in Figure 1. The overall shrinkage is much 
less, however, owing to the favorable orientation of 
the OLS solution. Figure 4 represents the contrasting 
situation in which the OLS solution is (unfavorably) 
aligned in orthogonal directions to the major axes of 

the predictor design. Here one sees qualitatively sim- 
ilar relative behavior as before, with a bit more ex- 
aggeration. Due to the unfavorable alignment of the 
OLS solution, the overall shrinkage here is quite 
considerable. Still the OLS solution is nearly reached 
by the K = 6-component PLS solution. 

3.2.1. Discussion. Although the study repre- 
sented by Figures 1-4 is hardly exhaustive, some 
tentative conclusions can be drawn. The qualitative 
behavior of RR, PCR, and PLS as deduced from 
(20), (22), and (24) is confirmed. They all penalize 
the solution coefficient vector a for projecting onto 
the low-variance subspace of the predictor design 
[i.e., ave(aTx)2 = small). For PLS and PCR, the 
strength of the penalty decreases as the number of 
components K increases. For RR, the strength of the 
penalty increases for increasing values of the ridge 
parameter A. For RR, the strength of this penalty is 
monotonically increasing for directions of decreasing 
sample variance. For PCR, it is a sharp threshold 
function, whereas for PLS it is relatively smooth but 
not monotonic. All three methods are shrinkage es- 
timators in that the length of their solution coefficient 
vector is less than that of the OLS solution. RR and 
PCR are strictly shrinking estimators in that in any 
projection the length of their solution is less than (or 
equal to) that of the OLS solution. This is not the 
case for PLS. It has preferred directions in which it 
increases the projected length of the OLS solution. 
For a K-component PLS solution, the projected length 
is expanded in the subspace of eigendirections as- 
sociated with eigenvalues close to the Kth eigen- 
value. 

In all situations depicted in Figures 1-4, PLS used 
fewer components to achieve the same overall 
shrinkage as PCR, generally about half as many com- 
ponents. PLS closely reached the OLS solution with 
about five to six components, whereas PCR requires 
all ten components. This property has been empiri- 
cally observed for some time and is often stated as 
an argument in favor of the superiority of PLS over 
PCR; one can fit the data at hand to the same degree 
of closeness with fewer components, thereby pro- 
ducing more parsimonious models. The issue of par- 
simony is a bit nebulous here, since the result of any 
method that fits linear models (29) is a single com- 
ponent (direction)-namely, that associated with the 
solution coefficient vector a. One can decompose a 
arbitrarily into sums of any number of (up top) other 
vectors and thus change its parsimony at will. For 
the same number of components, PCR applies more 
shrinkage than PLS and thus attempts to fit the data 
at hand less closely, thereby using fewer degrees of 
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freedom to obtain the fit. In the situations studied 
here (Figs. 1-4) it appears that PLS is using twice 
the number of degrees of freedom per component 
as PCR, but this will depend on the structure of the 
predictor-sample covariance matrix. (For all eigen- 
values equal, PLS uses p df for a one-component 
model.) Thus fitting the data with fewer (or more) 
components (in and of itself) has no bearing on the 
quality (future prediction error) of an estimator. 

Another argument often made in favor of PLS 
over PCR is that PCR only uses the predictor sample 
to choose its components, whereas PLS uses the re- 
sponse values as well. This argument is not unrelated 
to the one discussed previously. By using the re- 
sponse values to help determine its components, PLS 
uses more degrees of freedom per component and 
thus can fit the training data to a higher degree of 
accuracy than PCR with the same number of com- 
ponents. As a consequence, a K-component PLS so- 
lution will have less bias than the corresponding K- 
component PCR solution. It will, however, have 
greater variance, and since the mean squared pre- 
diction error is the sum of the two (bias squared plus 
variance) it is not clear which solution would be bet- 
ter in any given situation. In any case, either method 
is free to choose its own number of components (bias- 
variance trade-off) through model selection (CV). 
Both PLS and PCR span a full (but not the same) 
spectrum of models from the most biased (sample 
mean) to the least biased (OLS solution). The fact 
that PLS tends to balance this trade-off with fewer 
components is (in general) neither an advantage nor 
disadvantage. 

For all of the situations considered in Figures 1-4, 
PLS and PCR are seen to more strongly penalize for 
small ave(aTx)2 than RR for the same degree of over- 
all shrinkage |a|/l&|. The RR penalty (36) was derived 
to be optimal under the assumption that the (true) 
coefficient vector a (26) has no preferred alignment 
with respect to the predictor-variable distribution; 
all directions are equally likely (32). Thus the set of 
situations that favor PLS and PCR would involve a's 
that have small projections on the subspace spanned 
by the eigenvectors corresponding to the smallest 
eigenvalues. For example, an (improper) prior for a 
K-component PCR would place zero mass on any 
coefficient vector a for which 

p 

j (aTV2 > 
j=K+1 

and equal mass on all others. Here {v}q+i, are the 
eigenvectors of the sample predictor-variable covari- 
ance matrix [(8)-(9)] associated with the smallest 
N - K eigenvalues. 

Judging from Figures 1-4, a corresponding prior 
distribution for PLS (if it could be cast in a Bayesian 
framework) would be more complicated. As with 
PCR a prior for a K-component PLS solution would 
put low (but nonzero) mass on coefficient vectors 
that heavily project onto the smallest eigendirec- 
tions. It would, however, put highest mass on those 
that project heavily onto the space spanned by the 
eigenvectors associated with eigenvalues close to e2 
and moderate to high mass on the larger eigen- 
directions. 

In Figures 1-4, the scale factors for RR, PCR, 
and PLS were compared for the same amount of 
overall shrinkage (lal/l|l|). In any particular problem, 
there is no reason that application of these three 
methods would result in exactly the same overall 
shrinkage of the OLS solution, although they are not 
likely to be dramatically different. The respective 
scale factors were normalized in this way so that 
insight could be gained through the relative shape of 
their scale-factor spectra. 

3.3 Power Ridge Regression 
If one actually had a prior belief that the true 

coefficient vector a (26) is likely to be aligned with 
the larger eigendirections of the predictor-sample co- 
variance matrix V (8), PCR or PLS might be pre- 
ferred over RR. Another approach would be to di- 
rectly reflect such a belief in the choice of a prior 
distribution 7r(a) for the true coefficient vector a 
(26). This prior would not be spherically symmetric 
(32) but would involve a more general quadratic form 
in a, 

7r(Oa) = i(oTA-1a). (45) 
The (positive definite) matrix A would be chosen to 
emphasize directions for a/Ial that align with the 
larger eigendirections of V (8). One such possibility 
is to choose A to be proportional to V8, 

A = p2V, 

where the proportionality constant 

/32 = E,la12/tr(V6) 

(46) 

(47) 
is chosen to explicitly involve the expected value of 
latl2 [numerator (47)] under 7r(a) (45) and the de- 
nominator (47) is the trace of the matrix Vs. The 
optimal linear shrinkage estimator (33) under this 
prior [(45)-(47)] is 

a = (V + AV-8)-1 ave(yx) 
with 

A = o2/(N32). 

(48) 

(49) 
Here Cr2 is the variance of the noise [(26)-(27)] and 
N is the training-sample size. This procedure [(48)- 
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(49)] is known as power ridge regression (Hoerl and 
Kennard 1975; Sommers 1964). The corresponding 
(solution) shrinkage factors (33) in the principal com- 
ponent representation are 

e2( + 1) 

Jf e2(^+ 1) + A (50) 

The prior parameter 8 [(46)-(48)] regulates the 
degree to which the true coefficient vector at (26) is 
supposed to align with the major axes of the predictor- 
variable distribution. The value 8 = 0 gives rise to 
RR (36) and corresponds to no preferred alignment. 
Setting 8 > 0 expresses a preference for alignment 
with the larger eigendirections corresponding (ap- 
proximately) to PCR and PLS, whereas 8 < 0 places 
increased probability on the smaller eigendirections. 
The value 8 = -1 gives rise to James-Stein (James 
and Stein 1961) shrinkage in which the least squares 
solution coefficients are each shrunk by the same 
(overall) factor. If a value for 8 were unspecified, 
one could regard it as an additional meta parameter 
of the procedure (along with A) and choose both 
values (jointly) to minimize a model-selection cri- 
terion such as CV (12). Whether this will lead to 
better performance than one of the existing com- 
peting methods (RR, PCR, PLS) is an open question 
that is the topic of current research. 

One important issue is robustness of the procedure 
to the choice of a value for 8. Suppose that the true 
coefficient vector a (26) occurred with relative prob- 
ability 7r(a|t = 5*) [(45)-(47)] but a different value, 
8 = 8', was chosen for power ridge regression [(48)- 
(50)]. A natural question is: How much accuracy is 
sacrificed in such a situation for different (joint) val- 
ues of (6*, 5')? This is examined in Table 3 for a 
situation characterized byp = 20 predictor variables, 
N = 40 training observations, signal E,a,,t2 = 1, 
noise o- = .3, and predictor-variable covariance ma- 
trix eigenvalues {e2 = j2}20 Shown in Table 3 are 
the ratios of actual to optimal expected squared error 
loss when 8 = 8' (vertical) is assumed and 5 = 8* 
(horizontal) is the true parameter characterizing rr(a) 
[(45)-(47)]. 

One sees from Table 3 that choosing 8' = 0 (RR) 
is the most robust choice (over these situations). 
James-Stein shrinkage (8' = -1) is exceedingly 
dangerous except when 8* = -1, causing prefer- 
ential alignment with the smaller eigendirections. For 
all entries in which 8* and 8' are nonnegative, choos- 
ing 6' < 5* is better than vice versa. The evidence 
presented in Figures 1-4 indicates that PCR and PLS 
more strongly penalize the smaller eigendirections 
than RR, thereby more closely corresponding to 8' 
> 0. The results presented in Table 3 then suggest 
that RR (8' = 0) might be the most robust choice 

Table 3. Ratio of Actual to Optimal Expected Squared 
Error Loss When the Parameter 8 = 8' Is Used With Power 
Ridge Regression and the True Value Characterizing the 

Prior Distribution 7rfa) Is 8 = 8* 

8* 

8' -1 0 1 2 

-1 1.00 3.57 6.87 9.43 
0 1.37 1.00 1.10 1.27 
1 1.58 1.20 1.00 1.08 
2 1.76 1.81 1.15 1.00 

if the nature of the alignment of the true coefficient 
vector a (26) with respect to the predictor-variable 
distribution is unknown. 

4. VARIABLE SUBSET SELECTION 

VSS is the most popular method of regression reg- 
ularization used in statistics. The basic goal is to choose 
a small subset of the predictor variables that yields 
the most accurate model when the regression is re- 
stricted to that subset. A sequence of subsets, in- 
dexed by the number of variables K constituting each 
one, is considered. For a given K the subset of that 
cardinality giving rise to the best OLS fit to the data 
is selected ("all subsets regression"). Sometimes for- 
ward/backward stepwise procedures are employed to 
approximate this strategy with less computation. The 
subset cardinality K is considered to be a meta pa- 
rameter of the procedure whose value is chosen 
through some model-selection scheme, such as CV 
(12). Other model-selection methods (intended for 
linear modeling) are also often employed, but their 
use is not strictly correct since VSS is not a linear 
modeling method for a given value of its meta pa- 
rameter K; the particular variables constituting each 
selected subset are heavily influenced by the re- 
sponse values {yi}j so that they enter into the esti- 
mates {fi}N in a highly nonlinear fashion (see Brei- 
man 1989). 

To try to gain some insight into the relationship 
between VSS and the procedures considered previ- 
ously (RR, PCR, and PLS), we again consider the 
(highly) idealized situation [(26)-(27)] in a Bayesian 
framework: 

Pr(modeljdata) 

- Pr(datalmodel)Pr(model)/Pr(data), (51) 
where the left side ("posterior") is the quantity to 
be maximized, the first factor on the right side is the 
likelihood X, the second factor is the prior rr(a), and 
the denominator is a constant (given the data). If we 
further assume Gaussian errors e - N(0, o(2), the 
likelihood becomes S(a) - exp[- (N/202)ave(y - 
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aTx)2], and maximizing (51) is equivalent to mini- 
mizing the (negative) log-posterior 

ave(y - aTx)2 - 2 log ir(a), 

0 
10 

(52) 

where 7r(ao) is the (prior) relative probability of en- 
countering a (true) coefficient vector a (26). This is 
a penalized least squares problem with penalty -2 
log rr(a). 

In Section 3, we saw that choosing an equidirection 
prior (32) leads to procedures that shrink the coef- 
ficient vector estimate a away from directions in the 
predictor-variable space for which ave(aTx/|a|)2 is small 
to control the variance of the estimate. The prior 
that leads to RR is 

C~ 

6 

Iq 

9 
- 

2 log T/RR(a) = AOToI 

p 
= A 2 

a2. 
=1l 

(53) 

Informal "priors" leading to PCR and PLS were seen 
(Figs. 1-4) to involve some preferential alignment 
of a with respect to the eigendirections {vj}i (9) of 
the predictor covariance matrix (8). 

To study VSS, consider a generalization of (53) to 
p 

-2 log 7r(a) = A E |aj|i, (54) 
j=l 

where A > 0 (as before) regulates the strength of the 
penalty and y > 0 is an additional meta parameter 
that controls the degree of preference for the true 
coefficient vector a (26) to align with the original 
variable {xj}q axis directions in the predictor space. 
A value y = 2 yields a rotationally invariant penalty 
expressing no preference for any particular direc- 
tion-leading to RR. For y = 2, (54) is not rota- 
tionally invariant, leading to a prior that places ex- 
cess mass on particular orientations of a with respect 
to the (original variable) coordinate axes. 

Figure 5 shows contours of equal value for (54) 
[and thus for -r(a)] for several values of y (p = 2). 
One sees that y > 2 results in a prior that supposes 
that the true coefficient vector is more likely to be 
aligned in directions oblique to the variable axes, 
whereas for y < 2 it is more likely to be aligned with 
the axes. The parameter y can be viewed as the de- 
gree to which the prior probability is concentrated 
along the favored directions. A value y = o places 
maximum concentration along the diagonals, which 
is in fact not very strong. On the other hand, y --- 0 
places the entire prior mass in the directions of the 
coordinate axes. 

The situation y -- 0 corresponds to (all subsets) 
VSS. In this case, the sum in (54) simply counts the 
number of nonzero coefficients (variables that en- 
ter), and the strength parameter A can be viewed as 

I I I I I 
-1.0 -0.5 0.0 0.5 1.0 

Figure 5. Contours of Equal Value for the Generalized Ridge 
Penalty for Different Values of y. 

a penalty or cost for each one, controlling the number 
that do enter. Since the penalty term expresses no 
preference for particular variables, the "best" subset 
will be chosen through the minimization of the least 
squares term, ave(y - aTx)2, of the combined cri- 
terion (52). 

This discussion reveals that a prior that leads to 
VSS being optimal is very different from the ones 
that lead to RR, PCR, and PLS. It places the entire 
prior probability mass on the original variable axes, 
expressing the (prior) belief that only a few of the 
predictor variables are likely to have high relative 
influence on the response, but provides no infor- 
mation as to which ones. It will therefore work best 
to the extent that this tends to be the case. On the 
other hand, RR, PCR, and PLS are controlled by a 
prior belief that many variables together collectively 
effect the response with no small subset of them 
standing out. 

Expressions (52) and (54) reveal that VSS and RR 
can be viewed as two points (y = 0 and y = 2, 
respectively) on a continuum of possible regression- 
modeling procedures (indexed by y). Choosing either 
procedure corresponds to selecting from one of these 
two points. For a given situation (data set), there is 
no a priori reason to suspect that the best value of 
y might be restricted to only these two choices. It is 
possible that an optimal value for y may be located 
at another point in the continuum (0 < y c oo). An 
alternative might be to use a model-selection crite- 
rion (say CV) to jointly estimate optimal values of 
A and y to be used in the regression, thereby greatly 
expanding the class of modeling procedures. It is an 
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open question as to whether such an approach will 
actually lead to improved performance; this is the 
subject of our current research (with Leo Breiman). 
Note that this approach is different from those that 
use Bayesian methods to directly compute model- 
selection criteria for different variable subsets (e.g., 
see Lindley 1968; Mitchell and Beauchamp 1988). 
5. A COMPARATIVE MONTE CARLO STUDY 

OF OLS, RR, PCR, PLS, AND VSS 

This section presents a summary of results from a 
set of Monte Carlo experiments comparing the rel- 
ative performance of OLS, RR, PCR, PLS, and VSS 
that were described in more detail by Frank (1989). 
The five methods were compared for 36 different 
situations. In all situations, the training-sample size 
was N = 50. The situations were differentiated by 
the number of predictor variables (p = 5, 40, 100), 
structure of the (population) predictor-variable cor- 
relation matrix (independent-all off-diagonal ele- 
ments 0; highly collinear-all off-diagonal elements 
.9), true regression coefficient vector a (26) (equal- 
{aj = 1}'; unequal-{aj = j2})), and signal-to-noise 
ratio [(26)-(27)] (a/[var(atx)]1/2 = 7, 3, 1). A full 
3 x 2 x 2 x 3 factorial design on the chosen levels 
for these four factors yields the 36 situations studied 
here. 

For each situation, 100 repetitions of the following 
procedure were performed: 

1. Randomly generate N = 50 training observa- 
tions with a joint Gaussian distribution (with speci- 
fied population correlation matrix) for the predictors 
and using (26) for the response, with e drawn from 
a Gaussian with the specified Cr2 (27). 

2. Apply OLS, RR, PCR, PLS, and VSS (forward 
stepwise) to the training sample using CV (12) for 
model selection. 

3. Generate N, = 100 independent "test" obser- 
vations from the same prescription as in 1. 

4. Compute the average squared prediction error 
(PSE) for the model selected for each method over 
these test observations: 

1 N, 
PSE = E [y aYi - ao -Tx2, 

Nt i= 1 

Average PSE (55) in each of the 36 situations are 
the axes for this space. There are six points in the 
space, each defined by the 36 simultaneous values 
of average PSE for OLS, RR, PCR, PLS, VSS, and 
the true (known) coefficient vector true -= aTx (26). 
The quantities plotted in Figures 6-10 are the Eu- 
clidean distances (bar height) of each of the first five 
points (OLS, RR, PCR, PLS, and VSS) from the 
sixth point, which represents the performance using 
the "true" underlying coefficient vector as the regres- 
sion model in each situation. Thus smaller values 
indicate better performance. 

Figure 6 shows these distances in the full 36- 
dimensional space, which characterizes average per- 
formance over all 36 situations. Figures 7-10 show 
the distances in various subspaces characterized by 
slicing (conditioning) on specific values of some of 
the design variables. These represent respective av- 
erage performances conditioned on these particular 
values. 

One sees from Figure 6 that (not surprisingly) OLS 
gives the worst performance overall. RR is seen to 
provide the best average overall performance, closely 
followed by PLS and PCR. Stepwise VSS gives dis- 
tinctly inferior overall performance to the other biased 
procedures but still considerably better than OLS. 
Figure 7 shows that the biased methods improve very 
little on OLS in the well-conditioned (p = 5, N = 
50) case, but as the conditioning of the problem be- 
comes increasingly worse (p = 40, 100), their perfor- 
mance degrades substantially less than OLS, thereby 
providing increasing improvement over it. Figure 8 
shows that the biased methods provide dramatic 
improvement (over OLS) in the highly collinear 
situations. 

The results shown in Figure 9 represent something 
of a surprise. From the discussion in Section 4, one 

O 
CO 

(55) 

where (ao, a) is the solution transformed back to the 
original (unstandardized) representation. 
The computed PSE values for each method were 
averaged over the 100 replications of this procedure. 

Figures 6-10 present a graphical summary of se- 
lected results from this simulation study. [Complete 
results in both graphical and tabular form are in the 
work of Frank (1989).] The summaries are in the 
form of distances in a 36-dimensional Euclidean space. 

0 

0 

OLS RR PCR PLS VSS 

Figure 6. Distances of OLS, RR, PCR, PLS, and VSS From 
the Performance of the True Coefficient Vector, Averaged Over all 36 Situations. 
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Figure 7. Performance Comparisons Conditioned on the 
p = 5, 40, and 100 Variable Situations. 

might have expected VSS to provide dramatically 
improved performance in the situations correspond- 
ing to (highly) unequal (true) coefficient values for 
the respective variables. For the situations studied 
here, {aj = j2}, this did not turn out to be the case. 
All of the other biased methods dominated VSS for 
this case. Moreover, the performance of RR, PCR, 
and PLS did not seem to degrade for the unequal 
coefficient case. Since (stepwise) VSS must surely 
dominate the other methods if few enough variables 
only contribute to the response dependence, it would 
appear that the structure provided by {aj = j2}q 
is not sharp enough to cause this phenomenon to 
set in. 

Figure 10 contains few surprises. (Remember that 
bar height is proportional to distance from the per- 
formance of the true model, which itself degrades 
with decreasing signal-to-noise ratio.) Higher signal- 
to-noise ratio seems to help OLS and VSS more than 
the other biased methods. This may be because their 

O o 
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o 

O 

o - m m I III 
O 

OLS RR PCR PLS VSS 

Figure 8. Performance Comparisons Conditioned on Low 
and High Collinearity Situations. 

OLS RR PCR PLS VSS 

Figure 9. Performance Comparisons Conditioned on the 
Structure of the True-Coefficients Vector-Equal and Un- 
equal Coefficients. 

performance degrades less than OLS and VSS as the 
noise increases. 

For the situations covered by this simulation study, 
one can conclude that all of the biased methods (RR, 
PCR, PLS, and VSS) provide substantial improve- 
ment over OLS. In the well-determined case, the 
improvement was not significant. In all situations, 
RR dominated all of the other methods studied. PLS 
usually did almost as well as RR and usually out- 
performed PCR, but not by very much. Surprisingly, 
VSS provided distinctly inferior performance to the 
other biased methods except in the well-conditioned 
case in which all methods gave nearly the same per- 
formance. Although not discussed here, the perfor- 
mance ranking of these five methods was the same 
in terms of accuracy of estimation of the individual 
regression coefficients (see Frank 1989) as for the 
model prediction error shown here. Not surprisingly, 
the prediction error improves with increasing obser- 
vation to variable ratio, increasing collinearity, and 

O 
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10 

OLS RR PCR PLS VSS 

Figure 10. Performance Comparisons Conditioned on High, 
Medium, and Low Signal-to-Noise Ratio. 
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increasing signal-to-noise ratio. A bit surprising is 
the fact that performance seemed to be indifferent 
to the structure of the true coefficient values. 

The results of this simulation study are in accord 
with the qualitative results derived from the discus- 
sion in Section 3.2.1-namely, that RR, PCR, and 
PLS have similar properties and give similar perfor- 
mance. (Although not shown here, the actual solu- 
tions given by the three methods on the same data 
are usually quite similar.) One can speculate on the 
reasons why the performance ranking RR > PLS > 
PCR came out as it did. PCR might be troubled by 
its use of a sharp threshold in defining its shrinkage 
factors (42), whereas RR and PLS more smoothly 
shrink along the respective eigendirections [(36) and 
Figs. 1-4]. This may be (somewhat) mitigated by 
linearly interpolating the PCR solution between ad- 
jacent components to produce a more continuous 
shrinkage (Marquardt 1970). PLS may give up some 
performance edge to RR because it is not strictly 
shrinking (some fj > 1), which likely degrades its 
performance at least by a little bit. 

The performance differential between RR, PCR, 
and PLS is seen here not to be great. One would not 
sacrifice much average accuracy over a lifetime of 
using one of them to the exclusion of the other two. 
Still one may see no reason to sacrifice any, in which 
case this study would indicate RR as the method of 
choice. The discussion in Section 3.2.1 and the sim- 
ulation results presented here suggest that claims as 
to the distinct superiority of any one of these three 
techniques would require substantial verification. 

The situation is different with regard to OLS and 
VSS. Although these are the oldest and most widely 
used techniques in the statistical community, the re- 
sults presented here suggest that there might be much 
to be gained by considering one of the more modern 
methods (RR, PCR, or PLS) as well. 

6. MULTIVARIATE REGRESSION 
We now consider the general case in which more 

than one variable is regarded as a response (q > 1) 
[(1)-(7)] and a predictive relationship is to be mod- 
eled between each one {Yi}' and the complement set 
of variables, designated as predictors. The OLS so- 
lution to this (multivariate) problem is a separate 
(q = 1) uniresponse OLS regression of each Yi on the 
predictor variables x, without regard to their com- 
monality. The various biased regression methods (RR, 
PCR, PLS, VSS) could be applied to this problem 
by simply replacing each such uniresponse OLS 
regression with a corresponding biased (q = 1) 
regression, in accordance with this strategy. The dis- 
cussion of the previous sections indicates that this 
would result in substantial performance gains in many 
situations. 

Table 4. Wold's Two-Block PLS Algorithm 

(1) Initialize: Yo -y; X *-x; 9'o -0 
(2) For K = 1 top do: 
(3) uT (1, 0,..., 0) 
(4) Loop (until convergence) 
(5) WK = ave[(uYK 1)XK- 1] 
(6) u = ave[(WKTK_ 1)YK-_ 

(7) end Loop 
(8) ZK = WKXK- 1 

(9) rK = [ave(yK_ Zk)/ave(ze)lZK 
(10) VK = VK 1 + rK 

(11) YK = YK- -1 rK 
(12) XK = XK 1 - [ave(zKxK-_)/ave(zK)]ZK 
(13) if ave(x xK) = 0 then Exit 
(14) end For 

This approach is not the one advocated for PLS 
(H. Wold 1984). With PLS, the response variables 
y = {yi}q and the predictors x = {xk}' are separately 
collected together into groups ("blocks") which are 
then treated in a common manner more or less sym- 
metrically. Table 4 shows Wold's two-block algo- 
rithm that defines multiple-response PLS regression. 

If one were to develop a direct extension of Wold's 
(q = 1) PLS algorithm (Table 1) according to the 
strategy used by OLS (q-separate uniresponse re- 
gressions), line 3 of Table 1 would be replaced by 
the calculation of a separate covariance vector wKi 
for each separate response residual YK-1,i on each 
separate x residual XK_ 1i, WKi = ave(yK-_ iXK_,i) 

(i = 1, q). These would then be used to update 
q-separate models 9YKi (line 6), as well as q-separate 
new y residuals, YKi (line 7), and x residuals, XKi 
(line 8). 

Examination of Table 4 reveals a different strat- 
egy. A single covariance vector wk is computed for 
all responses by the inner loop (lines 3-7), which is 
then used to update all of the models yK (line 10) 
and the response residuals to obtain YK (line 11). A 
single set of x residuals XK is maintained by this al- 
gorithm using the single covariance vector WK (line 
12) as in the uniresponse PLS algorithm (Table 1, 
line 8). The inner loop (lines 4-7) is an iterative 
algorithm for finding linear combinations of the re- 
sponse residuals UTYK_1 and the predictor residuals 
WKXK_1 that have maximal joint covariance. This 
algorithm starts with an arbitrary coefficient vector 
u (line 3). After convergence of the inner loop, the 
resulting x residual linear combination covariance 
vector WK is then used for all updates. 

This two-block multiple-response PLS algorithm 
produces R models [R = rank of V (8)] for each 
response {Kj}K= 1 q= spanning a full spectrum of so- 
lutions from the sample means {9J = 0}q for K = 0 
to the OLS solutions for K = R. The number of 
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components K is considered a meta parameter of the 
procedure to be selected through CV, 

N q 

K = argmin L[yl - YKj\]2, (56) 
O-K<R 1=1 j= 

where yj, is the value of the jth response for the lth 
training observation and YKj\l is the K-component 
model for the jth response computed with the lth 
observation deleted from the training sample. Note 
that the same number of components K is used for 
each of the response models. 

As with the uniresponse PLS algorithm (Table 1), 
this two-block algorithm (Table 4) defining multi- 
response PLS does not reveal a great deal of insight 
as to its goal. One can gain more insight by following 
the prescription outlined in the beginning of Section 
3-that is, to consider the regression procedure as 
a two-step process. First, a K-dimensional subspace 
of p-dimensional Euclidean space is defined as being 
spanned by the unit vectors {ck}j, and then q-OLS 
regressions are performed under the constraints that 
the solution coefficient vectors {aj}q (5) lie in that 
subspace, 

K 

a = akjck. (57) 
k=l 

A regression procedure is then prescribed by defining 
the ordered sequence of unit vectors {ck}r that span 
the successive subspaces 1 < K - R. Defining each 
of these unit vectors to be the solution to 

Ck = argmax argmax {var(uTy)corr2[(uTy), (cTx)] 
{cTVC, =0} 1 uTu= 1 

cTc=l 

var(cTx)} (58) 

gives (in this framework) the same sequence of models 
{y'K}r as the algorithm in Table 4 defining two-block 
PLS regression. As with the uniresponse (q = 1) 
PLS criterion (24), the constraints on {ck}r require 
them to be unit vectors and to be V orthogonal so 
that the corresponding linear combinations are un- 
correlated (23). 

The multiresponse PLS criterion (58) bears some 
similarity to that for single-response PLS (24). It can 
be viewed as a penalized canonical correlation cri- 
terion. Using the middle factor corr2[(uTy), (cTx)] 
alone for the criterion would give rise to standard 
canonical correlation analysis, producing a sequence 
of uncorrelated linear combinations {ckx}R that 
maximally predict (the corresponding optimal linear 
combinations (uTy) of the responses. The (unbiased) 
canonical correlation criterion (middle factor) is in- 
variant to the scales of the corresponding linear com- 
binations uTy and cTx. The complete PLS criterion 
(58) is seen to include two additional factors [var(uTy) 

and var(cTx)] that serve as penalties to bias the so- 
lutions away from low spread directions in both the 
x and y spaces. The penalty imposed on the predictor- 
variable linear combination coefficient vector c is the 
same as that used for single response PLS (24). The 
discussion in Section 3.1 indicates that this mainly 
serves to control the variance of the estimated model. 
The introduction of the y-space penalty factor, along 
with optimizing with respect to its associated linear 
combination coefficient vector u, serves to place an 
additional penalty on the x-linear combination coef- 
ficient vectors {ck}r that define the sequence of PLS 
models {YKj}K=l q=1; they are not only biased away 
from low (data) spread directions in the predictor- 
variable space but also toward x directions that pref- 
erentially predict the high spread directions in the 
response-variable space. 

6.1 Bayesian Motivation 

A natural question to ask is: To what extent (if 
any) should this multiresponse PLS strategy (58) im- 
prove performance over that of simply ignoring the 
response-space covariance structure and performing 
q-separate (single-response) regressions of each yi on 
the predictors x, using PLS (24) or one of the other 
competing biased regression techniques (RR, PCR)? 
One way to gain some insight into this is to adopt 
an (idealized empirical) Bayesian framework (as in 
Sec. 3.1) and see what (joint) prior on the (true) 
coefficient vectors {(a}, 

(59) 
would lead to such a strategy being a good one. One 
can then judge the appropriateness of such a prior. 

In the case of single-response regression (Sec. 3.1), 
we saw that a prior distribution that placed no pref- erence on any coefficient vector direction a(/|a (32) 
gave rise to the preferential shrinkage of the corre- 
sponding estimate a/la| away from directions of low 
predictor spread (36) common to RR, PCR, and PLS. 
In particular, a Gaussian prior (53) (with Gaussian 
errors) leads to the optimality of RR. Consider a 
general (mean 0) joint Gaussian prior (59) 

7r(Oti, . . , a -q) exp( -2 a'ikcjFirk)- 2 ijkl) (60) 

where the sum is over all indices (1 c i < q, 1 < j < q, 1 < k < p, 1 < I < p). The covariance structure 
of such a prior distribution (60) is given by the (q x 
q x p x p) array F with elements Frikl; namely, 

Ecl . . . , Oq(aikljl) Fijkl (61) 
As in (32) and (53), we choose this covariance struc- 
ture to have no preferred directions in the predictor- 
variable space-but not necessarily in the response- 
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variable space. This corresponds to (with some abuse 
of notation) 

Fijkl = Fij8kl (62) 

with 8kl = 1 if k = I and 8kl = 0 otherwise. The 
corresponding resulting prior [(60) and (62)] pro- 
vides information [through Fij (62)] on the degree of 
similarity of the dependence of Yi and yj on the pre- 
dictors x but no information as to the nature of that 
x dependence. A relatively large positive value for 
r,i suggests that yi and yj have highly similar depen- 
dencies on x, whereas a large negative value indicates 
highly opposite dependencies. A relatively small value 
indicates dissimilar dependencies of yi and yj on the 
predictors. To further idealize the situation, suppose 
that 

Yi = atrx + Ei, i= 1, q, 
with the errors E = {ei}q having a joint Gaussian 
distribution 

e - N(O, S), (64) 

and, in addition, the error covariance is a multiple 
of the identity matrix 

[(60) and (62)] distributions, then averaged over the 
predictor-training sample. The quantity tr(V) is the 
trace of the predictor-sample covariance matrix V 
(8). If the data are standardized [(3)-(4)], then 

tr(V) = p. (69) 
Let W be the (q x q) sample covariance matrix 

of the response variables 

Wi = ave(yyj). (70) 
Then from (68) an "estimate" for the elements of 
the matrix F would be 

F = (W - a2)lp, (71) 
which could then be used in conjunction with Cri- 
terion (66) to obtain the resulting estimate A(RR) 
(given cr2). The common error variance o-2 remains 
unknown and can be regarded as a meta parameter 
of the procedure to be estimated (from the training 
sample) through CV: 

N 

a2 = argmin E I Yk - A\k(RRI2 )xk 1 
a2 k=l 

(72) 

If X were known, one could rotate and scale the y- 
space coordinates so that (65) is obtained in the trans- 
formed coordinate system. Otherwise (65) remains 
a simplifying assumption. Under these assumptions 
[(60)-(65)], the following generalization of RR to 
multiple responses is optimal (smallest MSE): 

A(RR) = argmin ave(y - Ax)'T(y 
A 

- Ax) + - |lA||2 . (66) 

Here A is a (q x p) matrix of regression coefficients 
(7), r is the (q x q) "prior" matrix (62), o2 is the 
(common) error variance (65), and 1 A 112 is the Fro- 
benius norm 

q p 

IIAII2 = E E A2. 
i=l 1=l 

(67) 

[For a different Bayesian approach to combining 
regression equations on the same predictor variables, 
see Lindley and Smith (1972).] 

If the elements of the matrix F (62) are unknown 
one can take an "empirical" Bayesian approach and 
estimate them from the (training) data. Assuming 
(60)-(65), one has 

aveE,E, ... Oq(YiY j) = ri-tr(V) + '2, (68) 

where the left side is the expected value of (yyj) over 
both the error [(64)-(65)] and the coefficient prior 

where A k(RRI|r2) is the coefficient matrix A(RR) 
estimated from (66) and (71) with the kth observa- 
tion deleted from the training sample. 

Insight into the nature of solutions provided by 
(66) and (71) can be enhanced by rotating in the x 
and y spaces to their respective principal component 
representations using orthonormal rotation matrices 
Ux and Uy such that 

V = UxE2U, 

W= UyTHU (73) 
with E2 and H2 being diagonal matrices constituting 
the respective (ordered) eigenvalues 

E2 = diag(e . . . e2) 

H2 = diag(h2 . h2). 

In this coordinate system, solutions to (66) and (71) 
simplify to 

2 

Aij(RR) = a g g2+ pc2/N' 

i = 1, q;j = 1,p, (75) 
with a&i being the OLS coefficient estimates (in the 
PP coordinate systems) and 

g2 = e2(h2 - 02),. (76) 
Here the subscript "+" indicates the positive part 
of the argument 

(r77)+ = r1 if r > O 
= 0 otherwise. (77) 
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This RR solution for multiple responses [(75)-(76)] 
bears considerable resemblance to that for single- 
response regression (38) in that each coefficient es- 
timate is obtained by (differentially) shrinking the 
corresponding (unbiased) OLS estimates. Here (for 
a given value 0-2) the relative shrinkage is controlled 
both by e2 (corresponding x-direction sample spread) 
and h2 (corresponding y-direction sample spread) in 
a more or less symmetric way through their product 
(76). A smaller value for either results in more 
shrinkage. The overall result is to bias the coefficient 
vector estimates (7) simultaneously away from low 
sample spread directions in both spaces. The overall 
degree of this bias is controlled by the value of a2 
[the variance of the noise (65)]. The larger its value 
the more bias is introduced. 

The solution [(75)-(76)] can be recast as 
e2 

Aj(RR) = a' e (78) 
~~~ewithj + A1 

with 

Ai = po2/N(h2 - a2). (79) 

Comparing (78) to (38) shows that this multiresponse 
RR simply applies separate (uniresponse) RR's to 
each principal component linear combination of the 
responses {yi(PP)}q, with 

y(PP) = U,y (80) 

(73), using separate ridge parameters {Ai}q for each 
one. As in single response RR (37), the ridge pa- 
rameters (79) are related to the (inverse) signal-to- 
noise ratio. 

Since the {yi(PP)}q are uncorrelated, they repre- 
sent a natural response set on which to perform sep- 
arate regressions. The basic difference between this 
approach [(66), (71), (78), (79)] and one in which 
totally separate RR's are used is that the latter would 
separately estimate its own ridge parameter [for each 
Yi(PP)] through model selection (say CV) thereby 
giving rise to q-meta parameters {Ai}q to be estimated 
for the entire procedure. The method previously de- 
veloped [(66), (71), (78), (79)] attempts to estimate 
all {Ai}l with a single meta parameter, 0-2, selected 
through CV. This is made possible through the as- 
sumption embodied in (65). To the extent that (65) 
represents a good approximation, this should give 
rise to better performance. If not, totally separate 
RR's on each yi(PP) may work better. 

6.2 Discussion 

The assumptions that lead to the {yi(PP)}lq (80) as 
being the natural coordinates for the single-response 
regressions are (60) and (62) through the results (68) 
and (71). Informally, these (quite reasonably) state 

that the degree of similarity of the dependence of a 
pair of responses (yi, yj) on the predictors is reflected 
in their correlation. A large positive (or negative) 
correlation between yi and yj means that the corre- 
sponding (true) coefficient vectors ,i and aj should 
be closely related; that is, ai - aj (or a,i - oj). 
Small correlations imply no special relationship. This 
information is incorporated into the regression pro- 
cedure by using the empirical response correlational 
structure to estimate the transformation to linear 
combinations of the responses {yi(PP)}q that are un- 
correlated (no relationship between any of the coef- 
ficient vectors) in which separate independent 
regressions are then performed. 

These results suggest that, unless the original re- 
sponse variables happen to be uncorrelated, there is 
profit to be gained in considering them together rather 
than simply performing separate regressions on the 
original responses. This is accomplished by doing the 
separate regressions on their principal component 
linear combinations {yi(PP)}q (80). For OLS, this, of 
course, has no effect, but for the shrinking proce- 
dures (RR, PCR, and PLS) this can make quite a 
difference. 

The qualitative behavior of two-block multi- 
response PLS (Table 4) as reflected in (57)-(58) is 
seen to be captured also in multiresponse RR [(66) 
and (71)] as reflected in (75)-(76)-namely, simul- 
taneous shrinkage of the coefficient vector estimates 
away from low (sample) spread directions in both 
the x and y spaces. This fact serves then to justify 
this strategy on the part of the two-block PLS al- 
gorithm under the same assumptions that lead to 
multiresponse RR [(66) and (71)]. The principal as- 
sumption is that the respective response errors 
{Ei}1 (63) are independent between the responses and 
all have approximately the same variance 
{(a2 - 02}q (65). To the extent that this tends to be 
the case, the low spread directions in the y space will 
be dominated more by the noise than the high spread 
directions, and biasing the estimates away from these 
low spread directions will reduce the variance of the 
estimates. If the error covariance matrix E (64) is 
not well approximated by (65), then the two-block 
PLS strategy (Table 4) might be counterproductive 
and a series of uniresponse PLS regressions (Table 
1) of each of the response principal component linear 
combinations y,(PP) (80) separately on the predic- tors could be (much) more effective. The same is, of course, also true for the respective versions of RR. 

As noted previously, if X (64) were known, it could 
be used to derive a transformation (rotation and scal- 
ing) of the y-coordinate system so that (65) was ob- 
tained in the transformed coordinate system. The 
analysis (two-block PLS or multiresponse RR) would 
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then be performed in the transformed system and 
the inverse transform applied to the resulting solu- 
tions. Such a transformation can be derived by de- 
composing E into the product 

E = RTR (81) 
and taking Z = Ry as the new responses. 

The case of E (64) unknown can be directly treated 
in the context of OLS (Box and Draper 1965). Here 
the residual covariance matrix is used as an estimate 
of X, 

t(A) = ave[(y - Ax)(y - Ax)T]. (82) 

Table 5. Mean Squared Prediction Error of Multivariate RR 
(upper entry) and Two-Block PLS (lower entry) for Several 

Signal-to-Noise Ratios SIN (rows) and Different Prior 
Parameter Values S (columns) for a Highly 

Collinear Situation 

'5 

S/N 0 1 10 

10 .22 .15 .14 
.24 .14 .12 

5 .35 .28 .26 
.38 .27 .24 

1 .68 .61 .60 
.72 .63 .59 

Since this estimate depends on the estimated coef- 
ficient matrix A (which in turn depends on i), an 
iterative algorithm is required. Using (82), the mul- 
tiresponse (negative) log-likelihood [assuming Gaus- 
sian errors (64)] can be shown (see Bates and Watts 
1988, p. 138) to reduce to -L(A) = log det[I(A)]. 
This is minimized with respect to the coefficient ma- 
trix A, using (iterative) numerical optimization tech- 
niques, to obtain the estimate. It is an open question 
as to whether an analog of this approach can be 
developed for biased regression procedures such as 
RR, PCR, or PLS. 

6.3 Monte Carlo Study 
We end this section by presenting results of a small 

Monte Carlo study comparing multivariate RR [(66) 
and (71)] with two-block PLS (Table 4) in several 
situations. We also compare both multivariate meth- 
ods to that of applying separate univariate (q = 1) 
regressions on each (original) response separately. 
The situations are characterized by the respective 
eigenstructures of the (population) predictor- and 
response-variable covariance matrices [(8) and (70)], 
signal-to-noise ratio, and alignment of the true coef- 
ficient vectors {ai}y (63) with the eigenstructure of 
the (population) predictor covariance matrix. 

For the first study, there are p = 64 predictor 
variables, q = 4 response variables, and N = 40 
training observations. The study consisted of 100 rep- 
lications of the following procedure. First, N = 40 
training observations were generated with the p = 
64 predictors having a joint (population) Gaussian 
distribution with the specified covariance matrix. The 
corresponding q = 4 response variables were ob- 
tained from (63) with the {i}N generated from a 
Gaussian distribution with the (same) specified vari- 
ance o(2. The true coefficient vectors {aJi} (63) were 
each independently generated from 7r(a) [(45)-(47)] 
under the constraint that the (population) response 
covariance matrix be the one specified. Several val- 
ues of the prior parameter 8 were used. After each 
of the models were obtained {using CV [(56) and 

(72)]}, 1,000 new observations were generated ac- 
cording to the same prescription and the average 
squared prediction error evaluated with them. 

Table 5 compares (in terms of MSE) multivariate 
RR [(66) and (71)] (upper entry) with two-block PLS 
(lower entry) for (population) predictor covariance 
matrix eigenvalues {e2 = l/j2}p and response covari- 
ance matrix eigenvalues {h2 = /i2}q (74). The rows 
correspond to different signal-to-noise ratios and the 
columns to different prior parameters 5, reflecting 
differing alignment of the true coefficient vectors 
{aIot} (63) with the predictor (population) distribution 
eigendirections. One sees that for 8 = 0 (equidirec- 
tion prior) RR does a bit better than PLS. For 8 = 
1 (moderate alignment) performance is nearly iden- 
tical, whereas for 8 = 10 (very heavy alignment) PLS 
has a slight advantage. These results hold for all signal- 
to-noise ratios. 

Table 6 presents a similar set of results for the 
same situation except with less collinearity in both 
spaces: {e2 = l/j}' and {h/ = lli}q. Here overall per- 
formance is worse for both methods, but their re- 
spective relative performance is similar to that re- 
flected in Table 5. These results lend further support 
to the conclusion that PLS assumes a prior distri- 

Table 6. Mean Squared Prediction Error of Multivariate RR 
(upper entry) and Two-Block PLS (lower entry) for Several 

Signal-to-Noise Ratios SIN (rows) and Different Prior 
Parameter Values 6 (columns) for Moderate Collinearity 

S/N 0 1 10 

10 .44 .27 .18 
.47 .26 .15 

5 .57 .41 .32 
.62 .39 .27 

1 .84 .73 .67 
.92 .74 .62 
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Table 7. Mean Squared Prediction Error of Multivariate RR 
and Two-Block PLS Along With That of Their 

Corresponding (separate) Uniresponse Procedures for 
Several Signal-to-Noise Ratios 

SIN Multi-ridge Uni-ridge Two-block PLS Uni-PLS 

10 .23 .25 .25 .27 
5 .36 .39 .39 .44 
1 .68 .74 .73 .79 

NOTE: SIN (rows), and prior parameter 8 = 0. 

bution on the true coefficient vectors {aji} (63) that 
preferentially aligns them with the larger eigendi- 
rections of the predictor covariance matrix (6 > 0). 

Table 7 compares the multivariate RR [(66) and 
(71)] and two-block PLS (Table 4) procedures with 
the corresponding strategies of applying q-separate 
uniresponse (q = 1) regressions on the original re- 
sponses. Here the situation is the same as that of 
Table 5 except that there are q = 8 responses and 
the comparison is made only for 8 = 0 [(45)-(47)]. 
The relative relationship between multivariate RR 
and two-block PLS is seen to be the same as that 
reflected in Table 5 (first column). Each multi- 
response method outperforms its corresponding uni- 
variate method, but by a surprisingly small amount. 
In fact, separate RR's do as well as two-block PLS. 
These results are especially surprising since the sit- 
uation represented here is set up to provide optimal 
advantage for the multivariate procedures. Thus even 
in this optimal setting separate regressions do almost 
as well as their multiresponse counterparts. This re- 
sult seems to run counter to the preceding discussion 
in which it appeared that using the additional infor- 
mation provided by y-space correlational structure 
ought to help improve performance. This might well 
be the case if the population correlations were known. 
The simulation results indicate that having to esti- 
mate them from the data induces enough uncertainty 
to substantially mitigate this potential advantage, at 
least for the cases studied here. 

Overall, the performance of multivariate RR [(66) 
and (71)] and two-block PLS (Table 4) are compa- 
rable. The RR procedure has the advantage of re- 
quiring about three times less computation, however. 

7. VARIABLE SCALING 

OLS is equivariant with respect to rotation and 
scaling of the variable axes; that is, if one were to 
apply any (nonsingular) affine (linear-rotation and/ 
or scaling) transformation to the variable axes, per- 
form the (OLS) analysis in the transformed system, 
and then apply the inverse transformation to the so- 
lution, the result would be the same as if the analysis 
were done in the original coordinate system. None 

of the biased regression procedures discussed here 
(RR, PCR, PLS, or VSS) enjoy this affine equivari- 
ance property. Applying such transformations on the 
variables can change the analysis and its result. RR, 
PCR, and PLS are equivariant under (rigid) rotations 
of the coordinates. This property allowed us to study 
them in the sample principal component represen- 
tations in which the (transformed) covariance mat- 
rices were diagonal. They are not, however, equi- 
variant to transformations that change the scales of 
the coordinates. VSS is equivariant under scaling of 
the variables but not under rotations. All of these 
procedures are equivariant under translation of (the 
origin of) the coordinate systems. 

In Section 3 we saw that the basic regularization 
provided by RR, PCR, and PLS was to shrink their 
solutions away from directions of small spread in the 
predictor space. This is not an affine invariant con- 
cept. If an original predictor variable xj has a (rel- 
atively) small scale compared to the other predictor 
variables, var(xj) < var(xk) (k + j), then the co- 
ordinate axis represented by this variable represents 
a direction of small spread in the predictor space and 
the solution will be biased away from involving this 
variable. Standardizing (autoscaling) the variables 
[(3)-(4)] to all have the same scale represents a de- 
liberate choice on the part of the user to make all 
variables equally influential in the analysis. If it were 
known (a priori) that some variables ought to be 
more influential than others, this information could 
be incorporated by adjusting their relative scales to 
reflect that importance. 

Lack of affine equivariance with respect to the 
predictor variables can be understood in the Bayes- 
ian framework adopted in Section 3.1. For RR, the 
prior (32) leading to its optimality is invariant under 
rotations; that is, if one were to apply a (rigid) ro- 
tation characterized by an orthonormal matrix U (UTU 
= U = /) 

Ox' = Uoa, (83) 
then 

r(t'ra')= ) TUTU = rT(a(T)= (oa ) (84) 
and the prior is unchanged, resulting in rotational 
equivariance. A more general prior would be 

7T(gO) = .T(cTA-1a) (85) 

where A is a p x p positive definite matrix. All rigid 
rotations (84) involve taking A = I, the identity ma- 
trix. This makes all directions for a (the truth) equally 
likely using the original coordinate scales to define 
the metric. Taking A to represent a more general 
quadratic form in a (85) imposes a specific prior 
belief on the relative importance of various directions 
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in the predictor space (again using a metric defined 
by the original variable scales). In particular, choos- 
ing A to be diagonal, 

A = diag(2 ... 2.), (86) 

alters the prior belief of the relative importance of 
the original predictor variables (coordinates). The 
particular choice 82 = var(xj) (j = 1, p) in (86) 
imposes the belief that all predictor variables have 
equal (a priori) importance, leading to the (data) 
scale invariant penalty 

p 
-2 log ir(a) = A 3 var(xj)a2 

j=1 

for RR (still using the original variable scales to form 
the metric). This is equivalent to changing the metric 
by standardizing the variables [(3)-(4)] and then us- 
ing A = I with respect to one's new metric. 

The similarity of PCR and PLS to RR extends to 
this property as well. Standardizing the variables so 
that all have the same scale imposes the prior belief 
that all of the predictor variables ought to be equally 
important. A different choice for the relative scales 
would reflect a different prior belief on their relative 
importance. 

In Section 4 we saw that a prior leading to VSS 
places all of its mass on certain preferred directions 
in the predictor-variable space-namely, the coor- 
dinate axes [(54), y -- 0]). Changing the definition 
of the coordinate axes (preferred directions) through 
a rotation clearly alters such a prior, causing VSS to 
not be equivariant under rotations. As y -- 0, the 
(VSS prior) penalty (54) simply counts the number 
of nonzero coefficients and thus does not involve the 
variable scales. This causes VSS to be equivariant 
under predictor-variable scaling. 

Since one would not expect (or want) a procedure 
to be invariant to the user's imposed prior beliefs as 
reflected in the chosen prior 7r(a), it is no surprise 
that the regularized regression procedures RR, PCR, 
PLS, and VSS are not affine equivariant in the pre- 
dictor space. [See Smith and Campbell (1980), and 
associated comments, for a spirited discussion of this 
isssue.] 

Changing the scales of the response variables in 
multiple-response regression (Sec. 6) has a similar 
effect but for a different reason. Changing their rel- 
ative scales changes their relative influence on the 
solution. This change, however, is reflected through 
the loss criterion rather than prior belief. The squared- 
error loss criterion is 

q 
L = E(y, - j,)2 (87) 

A more general (squared-error) loss criterion would A more general (squared-error) loss criterion would 

be 

LM = E(y - 5)TM-1E(y - Y) (88) 

with M some positive definite matrix chosen (by the 
user) to reflect the (relative) preference of accurately 
predicting certain linear combinations of the re- 
sponses. Choosing M to be a diagonal matrix 

M = diag(m1 ... mq) (89) 

chooses the response variables themselves to refer- 
ence the preferred linear combinations (axis direc- 
tions). In particular, the choice M = I causes their 
relative importance to be proportional to their sam- 
ple variance, whereas the choice 

mi = var(yi), i= 1, q, (90) 
causes them to have equal influence on the loss cri- 
terion (88). 

For OLS, a choice for M is irrelevant since this 
procedure chooses {ji}q such that each E(yi - Yi) 
(i = 1, q) is minimized separately, without regard for 
the other responses. Performing separate biased 
regressions on each of the individual original re- 
sponses has a similar effect in that M is irrelevant; 
the result is the same regardless of a choice for M. 
This is not, however, the case for the biased pro- 
cedures that operate collectively on the responses 
such as two-block PLS (Table 4) or multiresponse 
RR [(66) and (71)]. It is also not the case if the biased 
procedures are (separately) applied to the response 
principal component linear combinations {y1(PP)}q 
(80) as suggested in Section 6.2. (An exception oc- 
curs when the chosen values of the regularization 
parameters turn out to give rise to unbiased OLS.) 

Standardizing the response variables [(3)-(4)] and 
using M = I (88) in the transformed system is equiv- 
alent to using (88), (89), and (90) in the original 
coordinate system, thereby making all original re- 
sponses (but not their linear combinations) equally 
important (influential) in deriving the biased regres- 
sion models for different levels of bias. If this is not 
what is wanted (i.e., it is important to accurately 
predict some responses more than others), then this 
desire can be incorporated into a choice for M (88) 
or equivalently a choice for the relative scales of each 
response (if M is diagonal), or their linear combi- 
nations (if M is not diagonal). 

8. INTERPRETATION 

In the preceding sections, we have compared the 
various regression methods from the point of view 
of prediction. This is because prediction error pro- 
vides an objective criterion (once all definitions and 
assumptions have been stated) less subject to phil- 
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osophical or emotional argument. As is well known, 
the goal of a regression analysis is often not solely 
prediction but also description; one uses the com- 
puted regression equation(s) as a descriptive statistic 
to attempt to interpret the predictive relationships 
derived from the data. The loss structure for this 
enterprise is difficult to specify and depends on the 
experience and skill of the user in relation to the 
method used. 

It is common to interpret the solution coefficients 
on the (standardized) original variables as a measure 
of strength of the predictive relationship between the 
response(s) and the respective predictors. In this case 
accuracy of estimation of these coefficients is a rel- 
evant goal. As noted in Section 5, the relative rank- 
ing of the methods studied there on coefficient ac- 
curacy was the same as that for prediction (see Frank 
1989). Interpretation is also often aided by the sim- 
plicity or parsimony of the representation of the re- 
sult. This concept is somewhat subjective depending 
on the user's experience. In statistics, parsimony is 
often taken to refer to the number of (original) pre- 
dictor variables that "enter" the regression equa- 
tion-that is, the number with nonzero coefficients. 
The smaller this number, the more parsimonious and 
interpretable is the result. This leads to VSS as the 
method of choice, since it attempts to reduce mean 
squared (prediction) error by constraining coeffi- 
cients to be 0. Moreover, it is often the original vari- 
ables (as opposed to their linear combinations) that 
are most easily related to the system under study that 
produced the data. 

It is well known that, in the presence of extreme 
collinearity, interpretation of individual regression 
coefficients as relating to the strength of the respec- 
tive partial predictive relationships is dangerous. In 
chemometrics applications, the number of predictor 
variables often (greatly) exceeds the number of ob- 
servations. Thus there are many exact (as well as 
possibly many approximate) collinearities among the 
predictors. This has led chemometricians to attempt 
to interpret the solution in terms of various linear 
combinations of the predictors rather than the in- 
dividual predictor variables themselves. (This ap- 
proach is somewhat similar to the use of factor-analytic 
methods in the social sciences.) The linear combi- 
nations associated with the principal component di- 
rections are a natural set to consider for this purpose, 
since they represent a set of uncorrelated "variables" 
that are mutually orthogonal (with respect to the 
standardized predictors) and satisfy a simple opti- 
mality criterion (22). Moreover, principal components 
analysis has long been in use and is a well-studied 
method for describing and condensing multivariate 
data. 

The PLS procedure also produces a set of uncor- 
related (but not orthogonal) linear combinations. It 
is often (subjectively) argued that these are a more 
"natural" set to interpret regression solutions be- 
cause the criterion [(24) and (58)] by which they are 
defined involves the data response as well as predic- 
tor values. Linear combinations with low response 
correlation will tend to appear later in the PLS se- 
quence unless their (data) variance is very large. One 
consequence of this is that a solution regression coef- 
ficient vector a can generally be approximated to the 
same degree of accuracy by its projection on the 
space spanned by fewer PLS components than prin- 
cipal components. As noted in Section 3.2.1, how- 
ever, this parsimony argument is not compelling, since 
any vector a can be completely represented in a sub- 
space of dimension 1-namely, that defined by a 
unit vector proportional to it. 

The choice of a set of coordinates in which to 
interpret a regression solution is largely independent 
of the method by which the solution was obtained. 
One is not required to use a solution gotten through 
PCR or PLS to interpret it in terms of their respective 
components. One could interpret a regression equa- 
tion(s) obtained by either OLS, VSS, RR, PCR, or 
PLS in terms of the original predictor variables, the 
principal components, or PLS linear combinations 
(or all three). Prediction and interpretation are sep- 
arate issues, the former being amenable to (more or 
less) objective analysis but the latter always depend- 
ing on subjective criteria associated with a particular 
analyst. 
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APPENDIX: PROOF OF (20) AND (21) 
For convenience, center the data so that E(y) = 

E(x) = 0. The RR solution &A is given by (13). Let 
aTa = f2 so that a = fc, with cTc = 1. Then, given 
c, the solution to (13) for f, f(c), is 

f(c) = argmin[ave(y - fCTX)2 + Af2] f 

= ave(ycTx)/[ave(cTx)2 + A], 

and the ridge solution is (21) with 

CRR = argmin{ave[y - f(c)crx]2 + Af2(c)}. 
TC= 1 

(A.1) 

(A.2) 

Substituting (A.1) for f(c) in (A.2) and simplifying 
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gives 

*f0 2 ave2(ycrx) } 
CRR = argmin ave(y ) - ave(c +x) 

crc 1 ave(c + AJ 

or, equivalently, 

f a ave2(yCTx) CRR = argmax }]j C 
ave(y2ave2(ccTx)2 + ] 

ave2(ycTx) ave(cTx)2 
CTC=1 ave(y2)ave(cTx)2 ave(cTx)2 + AJ 

If the data are uncentered then mean values would 
have to be subtracted from all quantities, giving (20). 

[Received December 1991. Revised September 1992.] 
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